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Abstract 

Background: The analysis of mass spectrometry‑based quantitative proteomics data 
can be challenging given the variety of established analysis platforms, the differences 
in reporting formats, and a general lack of approachable standardized post‑processing 
analyses such as sample group statistics, quantitative variation and even data filtering. 
We developed tidyproteomics to facilitate basic analysis, improve data interoperability 
and potentially ease the integration of new processing algorithms, mainly through the 
use of a simplified data‑object.

Results: The R package tidyproteomics was developed as both a framework for stand‑
ardizing quantitative proteomics data and a platform for analysis workflows, containing 
discrete functions that can be connected end‑to‑end, thus making it easier to define 
complex analyses by breaking them into small stepwise units. Additionally, as with any 
analysis workflow, choices made during analysis can have large impacts on the results 
and as such, tidyproteomics allows researchers to string each function together in any 
order, select from a variety of options and in some cases develop and incorporate 
custom algorithms.

Conclusions: Tidyproteomics aims to simplify data exploration from multiple plat‑
forms, provide control over individual functions and analysis order, and serve as a tool 
to assemble complex repeatable processing workflows in a logical flow. Datasets in 
tidyproteomics are easy to work with, have a structure that allows for biological annota‑
tions to be added, and come with a framework for developing additional analysis tools. 
The consistent data structure and accessible analysis and plotting tools also offers a 
way for researchers to save time on mundane data manipulation tasks.

Keywords: Proteomics, Analysis, Quantitative, Pipeline, Workflow, Normalization, 
Imputation, Protein expression, Annotation enrichment

Background
Quantitative proteomics is at the forefront of translational biology [1, 2] and biomarker 
discovery [3–7], providing unparalleled access to the workings of complex biological sys-
tems. As such, there are numerous hardware and software platforms for measuring [8–
11] and cataloguing quantitative proteomes [12–16], each with individualized methods 
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of sorting, filtering, transforming quantitative values and visualizing the data [17]. Many 
of these tools generate output formats that have mixed data structures, non-standard-
ized variable formats, and often confusing variable names. This can lead researchers to 
create one-off scripts for importing, cleaning, and analyzing data, often creating an envi-
ronment of unmaintained code. Several R based packages already exist for the post anal-
ysis of quantitative proteomics data such as pmartR [18], protti [19] and DEqMS [20], 
along with several R packages that have companion web-based implementations such as 
MSstats [21, 22], DAPAR [23, 24] and ProteoSign [25]. In addition, there are a collection 
of software tools that implement a specific set of methods or lack accommodations to 
import data from multiple analysis platforms [17, 26–35]. We present tidyproteomics, an 
open-source R package for the post-analysis and visualization of proteomic data which 
aims to facilitate data explorations from multiple platforms, control over individual func-
tions and analysis order, and serve as a tool to assemble complex processing workflows 
in a logical flow. This package takes inspiration from the tidyverse collection, which aims 
to share an “underlying design philosophy, grammar, and data structures” whereby data 
manipulation operations can be strung together end-to-end, or “pipelined,” using simple 
logical functions to transform and visualize data as diagrammed in Fig. 1. tidyproteom-
ics, as an open-source package, aims to provide a platform for community standard anal-
yses and visualizations that often require complex code to manipulate data differently 
for each analysis or visualization. For example, plotting a bar graph of protein counts 
per LCMS (liquid chromatography mass spectrometry) run might be straightforward in 
the R tidyverse packages, whereas plotting a Venn diagram of the protein count overlaps 
between samples requires inconsistent and advanced data manipulation. tidyproteomics 
attempts to bridge that gap for proteomics analysis by creating an intuitive and user-
friendly environment for quantitative bioinformatics. Careful consideration was given 
to allow for full control over the order of operations, endowing users with the freedom 
to break convention. For example, the choice to normalize prior to imputation, or vice 
versa, has been explored and concluded [36], yet should remain a choice. Additionally, 
the choice to filter out contamination prior to normalization is advisable when it var-
ies between samples, such as human keratin contamination [37]. However, for example, 
filtering out a deliberate co-cultured organism might be preferred post- normalization. 
Each of these “last-mile” analysis considerations, requires a simple and facile imple-
mentation for exploration, which is the ultimate goal for tidyproteomics. Generally, pre-
processing operations such as impute(), normalize(), and subset() can be specified in a 
user-desired order, while post-processing operations for quality control, expression visu-
alization, and ontology enrichment can be inserted at arbitrary steps along the pipeline.

Implementation

This package is intended to serve varying degrees of R programming expertise, catering 
to novices with a companion web-based R Shiny app, enabling proficient R program-
mers to dictate nuanced control, and allowing experts to adapt, modify and extend the 
current codebase. This package contains numerous functions, each with variable param-
eters, and as such not all aspects are fully discussed herein, but in addition can be found 
in the online documentation. Furthermore, utilization of this package requires a basic 
understanding of R along with some cursory knowledge of LCMS based proteomics to 
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properly employ. To help facilitate the utility of tidyproteomics among users without 
much R experience, a publicly available data set is pre-loaded at installation [38], and 
a web-based application has also been developed. Note that tidyproteomics is purely 
intended to facilitate the manipulation and analysis of LCMS based quantitative prot-
eomics data (both labeled and label-free) and many of the analytical choices, such as 
normalization type or when to impute, are not proposed or enforced. It is therefore rec-
ommended to have a solid understanding in a suitable analytical approach, and many of 
the references cited herein provide a decent starting point. In depth guidance, discussion 
and examples can be found on the GitHub page.

Extensibility

Flexibility for additional data processing platforms is supported through the use of 
import directives that define or translate the output data for consumption into tidypro-
teomics. This functionality is explained in detail in the R package accompanying docu-
mentation found on-line and should be able to accommodate any flat file schema.

Fig. 1 Shows a diagram of a typical workflow for quantitative protein analysis starting by importing 
quantitative peptide values from an external source, with each function responsible for transforming, 
analyzing and visualizing the data



Page 4 of 14Jones et al. BMC Bioinformatics          (2023) 24:239 

Additionally, some functions allow for user-defined methods, such as calculating miss-
ing values with the impute() function, as well as the estimation of significance in differ-
ential expression between two groups using the expression() function. Although certain 
functions, such as normalize(), do not have plugins implemented, the framework should 
allow experienced R users to implement a desired method either by modifying the code 
on their own or submitting a request to the maintainers. The online documentation pro-
vides valuable resources and detailed explanations of the various features and functions 
available in the package, including how to implement custom methods and perform 
advanced data analysis. Analysis outside of this package is supported with the ability to 
convert the data-object to an R data.frame in either long or wide format extending the 
common as.data.frame().

Data importing

Importing data into tidyproteomics is handled by the main import() function, which cur-
rently can handle the output data from several common quantitative proteomics data 
processing suites such as ProteomeDiscoverer, MaxQuant, Skyline and DIA-NN. In 
addition to the native support for these platforms, there is a mechanism to create a con-
figuration file to import data from almost any source. The data import process attempts 
to normalize the data structure into four basic components, each with simplified data 

Table 1 The main data import structure utilizes a fragmented non‑redundant scheme to minimize 
the size and complexity of the data

Additionally, the Annotations table is setup in a one-to-many organization that does not enforce rigidity of term definitions 
across all measurement variables (eg. for each protein)

Data Variable Description

Experiments sample_id An 8‑character string identifier

import_file The import file

sample_file The individual LCMS sample file

sample The sample name

replicate The sample replicate

Quantitative sample_id  ...

sample  ...

replicate  ...

identifier Proteins: protein
Peptides: protein, peptide, modification

abundance_…  the quantitative accounting value, 
existing as raw and "normalized" (eg. 
median, linear, loess, randomforest)

Accounting sample_id  ...

identifier Proteins: protein
Peptides: protein, peptide, modification

imputed 0‑1 value, indicating the ratio of pep‑
tides imputed 

num_…  an integer accounting of peptides, 
unique_peptides and proteins

Annotations identifier Proteins: protein
Peptides: protein, peptide, modification

term The annotation group(eg. molecular 
function)

annotation The annotation name (eg. metal ion 
binding)
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structures as shown in Table 1. This function currently can accommodate either quanti-
tative protein or peptide data, the latter of which can be converted to protein-level data 
via the collapse() function described later. In essence, this strategy conforms to the basic 
philosophy within modern data structures of storing redundant information in sepa-
rate tables, reducing the size and complexity of a single table and thereby increasing the 
speed of accessing key components. As such, metadata pertaining to biological aspects 
such as GO, KEGG and UniProt annotations reside in a separate table called annotations 
and can be added without disturbing the main quantitative data while retaining utility in 
filtering and summary functions.

Data curation

One of the more versatile aspects of this R package is the ability to extensively curate and 
filter the data. The function subset() allows data to be easily filtered with simple seman-
tic expressions, similar to how the filter function in the tidyverse [39] package dplyr 
[40] operates. This package also introduces two new operators that work as a regular 
expression filter (%like%) which can be used in the semantic expression to subset data 
based on pattern matching in variable groups. For example, the expression !description 
%like% ‘ribosome’ would keep all proteins with a description that does not include the 
word ‘ribosome’. Additionally, together with the merge() and reassign() functions, data 
can be combined from multiple sources, assigned to specific sample groups and ana-
lyzed in a single collective. Alternatively, for example, data can be separated, normalized 
and imputed independently then recombined back into a single collective for analysis 
and visualization.

Fig. 2 Summary statistic visualizations between control (ctrl) and knockdown (kndw) for A protein counts 
with match‑between‑runs (top) and without (bottom) with 95%CI shown, B the quantitative abundance for 
each protein rank ordered by abundance, and the without match‑between‑runs protein overlap C as a Venn 
diagram and D a Euler diagram
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Once data are imported, the data object can immediately be summarized and visual-
ized, showing the counts, quantitative dynamic range, and accounting overlaps (Fig. 2) 
to obtain a high-level perspective on the data. This includes the variation in measure-
ment, which is important for understanding both the statistical power of the study and 
how it may improve through abundance imputation and normalization, as discussed in 
Processing. Additionally, all data can be exported to csv, tsv or other related tabular for-
mats for analysis in other platforms.

Annotations

Biological annotations are an important part of proteomic analyses as demonstrated 
by several methods that utilize conserved grouping nomenclature to derive multivari-
ate insights [41–43]. The tidyproteomics package accommodates the incorporation of 
annotations from any source by linking the protein identifier with a term, such as Gene 
Ontology’s biological domains, and the associated annotation, such as catalytic activity 
or DNA repair. In essence, the annotation terms form the grouping structure for which 
all proteins belong to one or many of. This structure allows for several terms to be pre-
sent simultaneously and used separately in enrichment analysis, including custom terms 
specific to a user’s research goals. Additionally, annotations can be harnessed in the sub-
set() function and are additionally applicable in the summary() function, allowing users 
to quickly assess protein groups.

Processing

Developing a quantitative proteomics data set requires some advanced knowledge of 
the experimental goals to determine whether steps such as normalization or imputation 
are warranted, and which specific methodologies should be employed. Several research 

Table 2 Suggested data normalization and imputation strategies for various proteomics 
experiments

These suggestions only reflect the opinions and experiences of the authors, have not been derived from examination of 
any specific literature, and do not come with any comparison testing. They are intended only as a starting point, adequate 
domain knowledge for each experimental design listed is expected

Experimental design Filter Normalization Imputation Refs.

Small change between 
two groups (e.g. gene 
knockdown/out, mutation, 
disease, drug response, 
biomarker discovery)

n/a ANY Randomforest BETWEEN [36, 58]

Difference between sepa‑
rate samples from the same 
organism (e.g. different 
organs, tissue sections, etc.) 

n/a Median shift Randomforest BETWEEN  [36, 
58]

Co‑cultured multi‑organism 
competitive study with 
or without environmental 
changes 

IN single organism Median shift Randomforest BETWEEN [59]

Affinity capture (flow‑
through/capture) 

OUT common contami‑
nants

None, or linear 
based on bait 
subset

Minimum WITHIN [60]

Antibody purification (flow‑
through/capture) 

OUT common contami‑
nants

n/a Minimum WITHIN [60]

Protein over‑expression n/a Median shift Minimum WITHIN [60]
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articles have previously explored these topics [36, 44–50] and should be referenced in 
conjunction with specific analytical goals.

Table  2 attempts to summarize some of the more common proteomic experimental 
designs along with suggested analytical implementations.

Protein accounting

Central to proteomics is the need to assign peptides to proteins and accurately define 
differences in their quantitative abundances between conditions. tidyproteomics 
accommodates simple methods of protein accounting through the collapse() function, 
which takes in an imported quantified peptide data set and generates a protein data 
set according to several methods [51]. Unique to this function, however, is the ability 
to select the protein inferencing algorithm, the number of proteins, ranked by abun-
dance, the use of a summary function (sum, median, mean, etc.) and the choice to 
split the abundance of shared peptides according to the summed proportion of each. 
However, it should be noted that more recent methods of protein accounting such as 
Tukey’s Median Polish [35] and MaxLFQ [52] have not yet been integrated.

Normalization

Quantitative proteomics relies on accurate normalization, for which several choices 
are available but remain somewhat difficult to accurately implement and may require 
distinct data formatting requirements. For example, a simple alignment of measured 
medians requires only a few lines of code, while implementing normalization from the 
limma package requires non-intuitive formatting of the data. The normalize() func-
tion is designed as a wrapper to handle various methods of normalization all at once, 
subsequently enabling researchers the ability to examine the result and choose the 
method best suited for their analysis. Alternatively, the select_normalization() func-
tion can automatically select the optimal normalization based on a weighted score 
combining coefficient of variation (CV), dynamic range (Fig. 3B) and variability in the 
first three principal component analysis (PCA) components (Fig. 3C) similar to other 
proposed methods [53], or the user can override this selection manually. The values 
from the selected normalization are then used for all downstream plots and analyses 
such as expression() and enrichment(). In addition to proteome-wide normalization, 
a subset can be used as the basis for normalization, such as for spike-in quantitative 
analytes or the bait protein in an immunoprecipitation experiment. This is accom-
plished with the same semantic syntax as with the subset() function and is reflected in 
the recorded operations.

Imputation

Along with normalization, imputing missing values is another important task in 
quantitative proteomics that can be challenging to implement. Again, tidyproteomics 
attempts to facilitate this with the impute() function, which currently can support any 
base-level or user-defined function, applied either within or between sample groups. 
Additionally, the R package missForest [47] has been included and implemented to 
run in parallel to optimized computing times, which has been previously shown to 
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Fig. 3 Post‑normalization visualizations for A simple box plot of abundance (log10 scale) values for each 
normalization method, B effects of normalization on variance and dynamic range (95%CI Log10 abundance), 
note randomforest’s ability to dramatically lower the variance without effecting the overall dynamic range, 
which can also be visualized in D where the CVs (averaged red line, heat map dark blue hexagons) are 
plotted as a function of Log10 abundance, showing that higher CVs are prominent at lower abundances as 
expected, and C showing the cumulative variance from PCA analysis over the principal components

Fig. 4 Post‑normalization visualizations showing A hierarchal clustering heatmap and B PCA score plot of 
the first two principal components
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yield the smallest error rates among algorithms evaluated for missing value imputa-
tion [36, 48–50]. Although random forest algorithms have demonstrated superiority 
in imputation and regression, this does not mean they should be used in every case. 
For example, when imputing missing values from a knock-out experiment, such as 
the one demonstrated herein and seen in Fig. 4, it can be preferrable to use minimum 
value imputation over the more complex random forest, simply because in this experi-
ment we have an expectation that missing values are not at random, and likely due to 
our knockout procedure.

Tracking

One of the more difficult challenges in data analysis is accurately and succinctly record-
ing the chronological transformations that occur on a data set. tidyproteomics imple-
ments a simple system for tracking and recording each transformative step within the 
main data object. That record is also easily retrievable with the operations() function call, 
the result of which describes each transformation along with any relevant scientific lit-
erature citations.

Visualization

The ability to summarize and visualize data, both pre and post processing, is critical to 
any processing pipeline. Tidyproteomics addresses this with both a summary() function 
and several plot_() functions. The summary function (described further in the online 
documentation) utilizes the same semantics inherent to subset() to generate summary 
statistics on any variable set, including all annotated and accounting terms. The func-
tions plot_counts() and plot_quantrank() (Fig. 2 A and B, respectively) both utilize the 
summary function to provide summary statistic visualizations. Additionally, the plot_
venn() and plot_euler() (Fig. 2 C and D, respectively) provide visualizations on the pro-
tein level overlap between 2 or more groups.

Visualizing processed data is an important aspect of data analysis, and great care is 
taken to explore the normalized data with a variety of plot functions (Fig.  3). Each of 
these is intended to display graphs that should lend insights such as the quantitative 
ranges pre and post-normalizations (Fig. 3A, plot_normalization()), the sample specific 
CVs and dynamic range (Fig.  3B, plot_variation()) and principal component variation 
(Fig.  3C, plot_variation_pca()) for each normalization. Perhaps more intriguing is the 
plot in Fig. 3D (plot_dynamic_range()) which shows a density heat map of sample spe-
cific CVs in relation to quantitative abundance. This plot highlights how CVs increase 
at the lower quantitative range and, more importantly, how each normalization method 
can address these large variances. Again, note how random forest normalization is best 
able to minimize the CVs at the lower quantitative range. Once normalization and impu-
tation methods have been implemented and selected, it is often desired to visualize the 
unbiased clustering of samples. This can be accomplished with the plot_heatmap() and 
plot_pca() functions to generate plots as shown in Fig. 4 A and B, respectively.
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Results
The demonstration of the tidyproteomics functions are facilitated by data included 
within the package, which is the ProteomeDiscoverer 3.0 analysis of biological replicates 
of both a wildtype HCT116 cell culture (ctrl shRNA) and HCT116 cell culture with a 
single targeted knock-down (kndw, p97 shRNA) of the p97 gene [38]. The full analysis is 
provided in the Supplemental Materials as an example R script that can be used to gen-
erate all the figures shown here.

After data importing, filtering, normalization and imputation, a two-sample differen-
tial expression analysis can be initiated in tidyproteomics using the expression() func-
tion defined simply as the ratio of the two sample groups (e.g. kndw/ctrl) along with 
a chosen statistical method such as Student’s T-Test or an Empirical Bayes offered by 
the limma package[54], however, recent methods that consider PSM counts are not 
yet implemented [20, 29]. The resulting expression analysis can be visualized using 
the plot_volcano() and plot_proportion() plotting functions as shown in Fig. 5A and B. 
While the volcano plot depicted in Fig. 5A has long been the traditional visualization for 
expression data [55], the alternative plot in Fig. 5B has been influential in conveying the 
relative abundance of differentially expressed proteins when researchers are expecting 
their over-expression to have a dramatic effect, or are unaware of the overall propor-
tion a targeted protein is within the dynamics of the entire proteome. In addition, we 
introduce a new visualization that compares the data between two expression analyses, 
which is accessible via plot_compexp(). This visualization is informative when comparing 
two different treatments against the same control (e.g. different compounds or separate 
gene mutations) and looking for similarities in significant protein expression differences 
(Additional file 1: Fig. S1). It can also be used to compare two different methods of deter-
mining expression differences in a single dataset, such as the Wilcoxon rank sum and 
Empirical Bayes methods (Additional file  1: Fig.  S1). Furthermore, a term enrichment 
analysis is possible proceeding an expression analysis with the enrichment() function, 
again defined simply as the ratio of the two sample groups (e.g. kndw/ctrl) along with 
a chosen statistical method such as the gene-set enrichment analysis (GSEA) algorithm 
[41] or a simple Wilcoxon rank sum comparison. This analysis can be visualized with the 
plot_enrichment() function as shown in Fig. 5C.

Fig. 5 Differential expression analysis plotted as a A traditional volcano plot and as a B proportional plot 
that emphasizes the quantitative abundance of each protein, highlighting in color (red‑downregulated and 
blue‑upregulated) the proteins with statistical differences. Plot B is helpful when visualizing the results from 
a pull‑down experiment where the differences are expected to be in the majority. Plot C visualizes the results 
from a term‑enrichment analysis where terms are ranked by p_value
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Conclusions
While there have been proposed data standards for quantitative mass spectrometry [56, 
57], not all research conforms to the same formats. This R package addresses a small, 
but important, component of data interpolation between analysis platforms for efficient, 
simplified post-analysis of quantitative proteomic data. The datasets in tidyproteomics 
are easy to manipulate, model and visualize, and have a specific structure amenable to 
adding biological annotations for further analyses. The framework provided by tidypro-
teomics should also facilitate the development of additional tools for data analysis. The 
advantages of a consistent data structure and accessible analysis and plotting tools free 
researchers from mundane data manipulation tasks.

Availability and requirements
Project name: tidyproteomics. Project homepage: https:// github. com/ jeffs ocal/ tidyp 
roteo mics. Operating system: platform independent. Programming language: R. Other 
requirements: none. License: MIT. Any restrictions to use by non-academics: none.
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LCMS  Liquid chromatography mass spectrometry
PCA  Principal component analysis
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GSEA  Gene‑set enrichment analysis

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859‑ 023‑ 05360‑7.

Additional file 1. Supplemental provides an example R script utilizing the tidyproteomics package to demonstra‑
tion the analysis pipeline and reproduce the figures used herein.

Acknowledgements
The authors would like to thank numerous Caltech graduate students for their feedback and discussions that are an 
invaluable resource for understanding how to convey concise information about biological systems from complex 
analyses. A manual covering all the available functions along with explanation of each function and tutorials can be 
found at https:// jeffs ocal. github. io/ tidyp roteo mics. An R Shiny application is available at http:// bioin forma tics. pel. calte ch. 
edu/ tidyp roteo mics/.

Author contributions
JJ developed the tidyproteomics code base. EM developed the shiny application. TYW, BL, TFC and MLR provided insight 
to workflow processes and analysis. All authors read and approved the final manuscript.

Funding
The Proteome Exploration Laboratory was supported by NIH OD010788, NIH OD020013, the Betty and Gordon Moore 
Foundation through grant GBMF775 and the Beckman Institute at Caltech. The Shiny app is hosted by The Proteome 
Exploration Laboratory at the Caltech Beckman Institute. This work was supported by the Institute for Collaborative 
Biotechnologies through cooperative agreement W911NF‑19‑2‑0026 from the U.S. Army Research Office. The content of 
the information does not necessarily reflect the position or the policy of the Government, and no official endorsement 
should be inferred. In addition, partial support was provided by the Wellcome Leap Delta Tissue Program.

Availability of data and materials
The datasets analyzed within the current study are available in the Tidyproteomics code repository, https:// github. com/ 
jeffs ocal/ tidyp roteo mics and Shiny app https:// github. com/ ejmac krell/ tidyp roteo mics‑ inter active. Access to both the 
protein and peptide data sets are immediately available upon loading the package. Additionally, the data set is available 
from the Caltech data repository, https:// data. calte ch. edu/ recor ds/ aevwq‑ 2ps50, taken from Wang et al. [38].

https://github.com/jeffsocal/tidyproteomics
https://github.com/jeffsocal/tidyproteomics
https://doi.org/10.1186/s12859-023-05360-7
https://jeffsocal.github.io/tidyproteomics
http://bioinformatics.pel.caltech.edu/tidyproteomics/
http://bioinformatics.pel.caltech.edu/tidyproteomics/
https://github.com/jeffsocal/tidyproteomics
https://github.com/jeffsocal/tidyproteomics
https://github.com/ejmackrell/tidyproteomics-interactive
https://data.caltech.edu/records/aevwq-2ps50


Page 12 of 14Jones et al. BMC Bioinformatics          (2023) 24:239 

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 7 March 2023   Accepted: 25 May 2023

References
 1. Dupree EJ, Jayathirtha M, Yorkey H, Mihasan M, Petre BA, Darie CC. A critical review of bottom‑up proteomics: the 

good, the bad, and the future of this field. Proteomes. 2020;8:14.
 2. Pappireddi N, Martin L, Wühr M. A review on quantitative multiplexed proteomics. ChemBioChem. 

2019;20:1210–24.
 3. Shu T, Ning W, Wu D, Xu J, Han Q, Huang M, et al. Plasma proteomics identify biomarkers and pathogenesis of 

COVID‑19. Immunity. 2020;53:1108‑1122.e5.
 4. Swan AL, Mobasheri A, Allaway D, Liddell S, Bacardit J. Application of machine learning to proteomics data: clas‑

sification and biomarker identification in postgenomics biology. OMICS. 2013;17:595–610.
 5. Jones JJ, Wilcox BE, Benz RW, Babbar N, Boragine G, Burrell T, et al. A plasma‑based protein marker panel 

for colorectal cancer detection identified by multiplex targeted mass spectrometry. Clin Colorectal Cancer. 
2016;15:186‑194.e13.

 6. Hristova VA, Chan DW. Cancer biomarker discovery and translation: proteomics and beyond. Expert Rev Pro‑
teom. 2019;16:93–103.

 7. Nusinow DP, Szpyt J, Ghandi M, Rose CM, McDonald ER 3rd, Kalocsay M, et al. Quantitative proteomics of the 
cancer cell line encyclopedia. Cell. 2020;180:387‑402.e16.

 8. Yu Q, Paulo JA, Naverrete‑Perea J, McAlister GC, Canterbury JD, Bailey DJ, et al. Benchmarking the orbitrap tribrid 
eclipse for next generation multiplexed proteomics. Anal Chem. 2020;92:6478–85.

 9. Bekker‑Jensen DB, Martínez‑Val A, Steigerwald S, Rüther P, Fort KL, Arrey TN, et al. A compact quadrupole‑
orbitrap mass spectrometer with faims interface improves proteome coverage in short LC gradients*. Mol Cell 
Proteomics. 2020;19:716–29.

 10. Lesur A, Schmit P‑O, Bernardin F, Letellier E, Brehmer S, Decker J, et al. Highly multiplexed targeted proteomics 
acquisition on a TIMS‑QTOF. Anal Chem. 2021;93:1383–92.

 11. Sobsey CA, Ibrahim S, Richard VR, Gaspar V, Mitsa G, Lacasse V, et al. Targeted and untargeted proteomics 
approaches in biomarker development. Proteomics. 2020;20:e1900029.

 12. Orsburn BC. Proteome discoverer—a community enhanced data processing suite for protein informatics. Pro‑
teomes. 2021;9:15.

 13. Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry‑based shotgun prot‑
eomics. Nat Protoc. 2016;11:2301–19.

 14. Pino LK, Searle BC, Bollinger JG, Nunn B, MacLean B, MacCoss MJ. The Skyline ecosystem: Informatics for quanti‑
tative mass spectrometry proteomics. Mass Spectrom Rev. 2020;39:229–44.

 15. Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, et al. OpenMS: a flexible open‑source software 
platform for mass spectrometry data analysis. Nat Methods. 2016;13:741–8.

 16. da Veiga LF, Haynes SE, Avtonomov DM, Chang H‑Y, Shanmugam AK, Mellacheruvu D, et al. Philosopher: a versa‑
tile toolkit for shotgun proteomics data analysis. Nat Methods. 2020;17:869–70.

 17. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for com‑
prehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40.

 18. Stratton KG, Webb‑Robertson B‑JM, McCue LA, Stanfill B, Claborne D, Godinez I, et al. pmartR: quality control and 
statistics for mass spectrometry‑based biological data. J Proteome Res. 2019;18:1418–25.

 19. Quast J‑P, Schuster D, Picotti P. protti: an R package for comprehensive data analysis of peptide‑ and protein‑
centric bottom‑up proteomics data. Bioinform Adv. 2022;2:vbab041.

 20. Zhu Y, Orre LM, Zhou Tran Y, Mermelekas G, Johansson HJ, Malyutina A, et al. DEqMS: a method for accurate vari‑
ance estimation in differential protein expression analysis. Mol Cell Proteom. 2020;19:1047–57.

 21. Choi M, Chang C‑Y, Clough T, Broudy D, Killeen T, MacLean B, et al. MSstats: an R package for statistical analysis of 
quantitative mass spectrometry‑based proteomic experiments. Bioinformatics. 2014;30:2524–6.

 22. Kohler D, Kaza M, Pasi C, Huang T, Staniak M, Mohandas D, et al. MSstatsShiny: a GUI for versatile, scalable, and 
reproducible statistical analyses of quantitative proteomic experiments. J Proteome Res. 2023;22:551–6.

 23. Wieczorek S, Combes F, Lazar C, Giai Gianetto Q, Gatto L, Dorffer A, et al. DAPAR & ProStaR: software to perform 
statistical analyses in quantitative discovery proteomics. Bioinformatics. 2017;33:135–6.

 24. Tardif M, Fremy E, Hesse A‑M, Burger T, Couté Y, Wieczorek S. Statistical analysis of quantitative peptidomics and 
peptide‑level proteomics data with Prostar. Methods Mol Biol. 2023;2426:163–96.

 25. Theodorakis E, Antonakis AN, Baltsavia I, Pavlopoulos GA, Samiotaki M, Amoutzias GD, et al. ProteoSign v2: a 
faster and evolved user‑friendly online tool for statistical analyses of differential proteomics. Nucleic Acids Res. 
2021;49:W573–7.



Page 13 of 14Jones et al. BMC Bioinformatics          (2023) 24:239  

 26. Sticker A, Goeminne L, Martens L, Clement L. Robust summarization and inference in proteome‑wide label‑free 
quantification. Mol Cell Proteom. 2020;19:1209–19.

 27. Yang Y, Cheng J, Wang S, Yang H. StatsPro: Systematic integration and evaluation of statistical approaches for 
detecting differential expression in label‑free quantitative proteomics. J Proteom. 2022;250:104386.

 28. Wolski WE, Nanni P, Grossmann J, d’Errico M, Schlapbach R, Panse C. prolfqua: a comprehensive R‑package for 
proteomics differential expression analysis. J Proteome Res. 2023;22:1092–104.

 29. Goeminne LJE, Sticker A, Martens L, Gevaert K, Clement L. MSqRob takes the missing hurdle: uniting intensity‑ 
and count‑based proteomics. Anal Chem. 2020;92:6278–87.

 30. Ahlmann‑Eltze C, Anders S. proDA: probabilistic dropout analysis for identifying differentially abundant proteins 
in label‑free mass spectrometry. bioRxiv. 2020;661496.

 31. Gregori J, Sánchez À, Villanueva J. MsmsEDA & msmsTests: label‑free differential expression by spectral counts. 
Methods Mol Biol. 2023;2426:197–242.

 32. Heming S, Hansen P, Vlasov A, Schwörer F, Schaumann S, Frolovaitė P, et al. MSPypeline: a python package for 
streamlined data analysis of mass spectrometry‑based proteomics. Bioinform Adv. 2022;2:vbac004.

 33. Shah AD, Goode RJA, Huang C, Powell DR, Schittenhelm RB. LFQ‑analyst: an easy‑to‑use interactive web 
platform to analyze and visualize label‑free proteomics data preprocessed with MaxQuant. J Proteome Res. 
2020;19:204–11.

 34. Koopmans F, Li KW, Klaassen RV, Smit AB. MS‑DAP platform for downstream data analysis of label‑free proteomics 
uncovers optimal workflows in benchmark data sets and increased sensitivity in analysis of Alzheimer’s biomarker 
data. J Proteome Res. 2023;22:374–86.

 35. Kohler D, Staniak M, Tsai T‑H, Huang T, Shulman N, Bernhardt OM, et al. MSstats version 4.0: statistical analyses of 
quantitative mass spectrometry‑based proteomic experiments with chromatography‑based quantification at scale. 
J Proteome Res. 2023;22:1466–824.

 36. Karpievitch YV, Dabney AR, Smith RD. Normalization and missing value imputation for label‑free LC‑MS analysis. 
BMC Bioinform. 2012;13(Suppl 16):S5.

 37. Mellacheruvu D, Wright Z, Couzens AL, Lambert J‑P, St‑Denis NA, Li T, et al. The CRAPome: a contaminant repository 
for affinity purification‑mass spectrometry data. Nat Methods. 2013;10:730–6.

 38. Wang F, Li S, Houerbi N, Chou T‑F. Temporal proteomics reveal specific cell cycle oncoprotein downregulation by 
p97/VCP inhibition. Cell Chem Biol. 2022;29:517‑529.e5.

 39. Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the tidyverse. J Open Source 
Softw. 2019;4:1686.

 40. Wickham H, François R, Henry L, Müller K, et al. dplyr: a grammar of data manipulation. R package version 0 4. 
2015;3:156.

 41. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analy‑
sis: a knowledge‑based approach for interpreting genome‑wide expression profiles. Proc Natl Acad Sci U S A. 
2005;102:15545–50.

 42. Wu X, Hasan MA, Chen JY. Pathway and network analysis in proteomics. J Theor Biol. 2014;362:44–52.
 43. Reimand J, Isserlin R, Voisin V, Kucera M, Tannus‑Lopes C, Rostamianfar A, et al. Pathway enrichment analysis and 

visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc. 2019;14:482–517.
 44. Yan K, Yang Y, Zhang Y, Zhao W, Liao L. Normalization method utilizing endogenous proteins for quantitative prot‑

eomics. J Am Soc Mass Spectrom. 2020;31:1380–8.
 45. Välikangas T, Suomi T, Elo LL. A systematic evaluation of normalization methods in quantitative label‑free proteom‑

ics. Brief Bioinform. 2018;19:1–11.
 46. Wang P, Tang H, Zhang H, Whiteaker J, Paulovich AG, Mcintosh M. Normalization regarding non‑random missing 

values in high‑throughput mass spectrometry data. Pac Symp Biocomput. 2006;315–26.
 47. Stekhoven DJ, Bühlmann P. MissForest–non‑parametric missing value imputation for mixed‑type data. Bioinformat‑

ics. 2012;28:112–8.
 48. Ma W, Kim S, Chowdhury S, Li Z, Yang M, Yoo S, et al. DreamAI: algorithm for the imputation of proteomics data. 

bioRxiv. 2020;2020.07.21.214205.
 49. Kokla M, Virtanen J, Kolehmainen M, Paananen J, Hanhineva K. Random forest‑based imputation outperforms other 

methods for imputing LC‑MS metabolomics data: a comparative study. BMC Bioinform. 2019;20:492.
 50. Bramer LM, Irvahn J, Piehowski PD, Rodland KD, Webb‑Robertson B‑JM. A review of imputation strategies for isobaric 

labeling‑based shotgun proteomics. J Proteome Res. 2021;20:1–13.
 51. Huang T, Wang J, Yu W, He Z. Protein inference: a review. Brief Bioinform. 2012;13:586–614.
 52. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome‑wide label‑free quantification by delayed 

normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteom. 2014;13:2513–26.
 53. Willforss J, Chawade A, Levander F. NormalyzerDE: online tool for improved normalization of omics expression data 

and high‑sensitivity differential expression analysis. J Proteome Res. 2019;18:732–40.
 54. Smyth GK. Limma: linear models for microarray data. In: Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S, edi‑

tors. Bioinformatics and computational biology solutions using R and Bioconductor. New York: Springer; 2005. p. 
397–420.

 55. Li W. Volcano plots in analyzing differential expressions with mRNA microarrays. J Bioinform Comput Biol. 
2012;10:1231003.

 56. Hoffmann N, Rein J, Sachsenberg T, Hartler J, Haug K, Mayer G, et al. mzTab‑M: a data standard for sharing quantita‑
tive results in mass spectrometry metabolomics. Anal Chem. 2019;91:3302–10.

 57. Walzer M, Qi D, Mayer G, Uszkoreit J, Eisenacher M, Sachsenberg T, et al. The mzquantml data standard for mass 
spectrometry–based quantitative studies in proteomics. Mol Cell Proteom. 2013;12:2332–40.

 58. Karpievitch YV, Taverner T, Adkins JN, Callister SJ, Anderson GA, Smith RD, et al. Normalization of peak intensities in 
bottom‑up MS‑based proteomics using singular value decomposition. Bioinformatics. 2009;25:2573–80.



Page 14 of 14Jones et al. BMC Bioinformatics          (2023) 24:239 

 59. Chignell JF, Park S, Lacerda CMR, De Long SK, Reardon KF. Label‑free proteomics of a defined, binary co‑culture 
reveals diversity of competitive responses between members of a model soil microbial system. Microb Ecol. 
2018;75:701–19.

 60. Webb‑Robertson B‑JM, Matzke MM, Jacobs JM, Pounds JG, Waters KM. A statistical selection strategy for normaliza‑
tion procedures in LC‑MS proteomics experiments through dataset‑dependent ranking of normalization scaling 
factors. Proteomics. 2011;11:4736–41.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Tidyproteomics: an open-source R package and data object for quantitative proteomics post analysis and visualization
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Implementation
	Extensibility
	Data importing
	Data curation
	Annotations
	Processing
	Protein accounting
	Normalization
	Imputation
	Tracking
	Visualization

	Results
	Conclusions
	Availability and requirements
	Anchor 21
	Acknowledgements
	References


