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ABSTRACT We demonstrate the parametric amplification and noise squeezing of nanomechanical motion utilizing dispersive coupling
to a Cooper-pair box qubit. By modulating the qubit bias and resulting mechanical resonance shift, we achieve gain of 30 dB and
noise squeezing of 4 dB. This qubit-mediated effect is 3000 times more effective than that resulting from the weak nonlinearity of
capacitance to a nearby electrode. This technique may be used to prepare nanomechanical squeezed states.
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Parametric amplifiers have been essential in manipu-
lating the quantum noise of optical1-5 and micro-
wave electromagnetic fields.6-8 At the heart of such

experiments, reactive media, including optical crystals,
atomic clouds, and Josephson junctions, are strongly driven
so that nonlinearities in the media stimulate processes that
can be used for signal amplification and vacuum noise
squeezing.

Similarly, nonlinearities in micro- and nanoelectrome-
chanical systems (MEMS and NEMS) have been utilized for
parametric amplification of motional signals before trans-
duction to the electronic domain,9-12 including the demon-
stration of thermal noise squeezing.12 While several different
techniques have been explored for parametric modulation
of NEMS and MEMS, the most common approach utilizes
the shift in mechanical resonance frequency that results
from the electrostatic nonlinearity of a nearby electrode.12,13

In principle, parametric modulation via this capacitive
“pulling” should enable the preparation of quantum squeezed
states of motion.14 However, due to the microscopic scale
of such systems, geometric capacitances are typically very
small. Thus, to achieve enough parametric gain to reach the
quantum limit or generate quantum squeezed states, large
pump amplitudes are required, which could result in delete-
rious effects that obscure any quantum signatures. For
example, assuming the parameters realized in a recent
experiment,15 squeezing the mechanical noise to 10% of the
vacuum level would require modulating the gate electrode
of the nanoresonator with an amplitude of 300 mV. Operat-

ing with such a large pump amplitude could present techni-
cal challenges, for example, parasitic coupling to ultrasen-
sitive measurement electronics such as a single-electron
transistor or charge qubit.

In contrast, the method that we demonstrate here utilizes
the highly nonlinear charge-voltage relationship in a Cooper-
pair box (CPB) qubit that results from the Josephson coupling
across the CPB’s superconducting tunnel junctions. When
the nanoresonator is capacitively coupled to the CPB, this
charge-voltage relationship affects the nanoresonator’s mo-
tion and its resonance shows a CPB-state-dependent shift.16

We find the modulation of the qubit gate voltage produces
parametric response of the nanoresonator that is 3000 times
greater than what can be achieved using geometric capaci-
tance. Use of the qubit nonlinearity to parametrically pump
the nanoresonator also significantly reduces the direct elec-
trostatic drive of the resonator, which occurs simultaneously
with the parametric modulation when pumping through
geometric capacitance17 and would further complicate pro-
tocols for engineering nonclassical states of the mechanics.
Also, such phase-sensitive detection can be utilized for
position measurements with sensitivity below the quantum
limit for continuous phase-insensitive detection.18,19 Fur-
thermore, recent theoretical studies20,21 have shown that a
driven CPB can be used as an auxiliary system with which
to generate various nonlinear nanomechanical Hamilto-
nians, opening up the possibility for producing a variety of
nonclassical states of nanoresonators.

The effect of the Cooper-pair box (CPB) qubit on the
nanoresonator is to shift the mechanical resonance at the
lowest order.22,23 To see this, we assume the nanoresonator
to be a simple harmonic oscillator and consider the coupled
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Hamiltonian in the qubit charge basis and the harmonic
oscillator number basis, using Pauli matrices (σ̂z,σ̂x) and
raising and lowering operators (â†,â):

Here EC and EJ ) EJ0 cos|Φ/Φ0| (Φ ) flux through the CPB
loop, Φ0 ) flux quantum)24 are the charging and Josephson
energies of the qubit respectively, ng is the gate charge on
the CPB in unit of cooper pairs, ω0/2π is the bare resonance
frequency of the nanoresonator, and λ is the coupling
strength, given by λ ) 4Ec(∂ng/∂x)xzp, where x ) mechanical
displacement, xzp ) (p/2mω0)1/2 and m ) effective mass of
the nanoresonator. For the parameters of the device mea-
sured here, λ is small compared to the other energy scales
in the Hamiltonian, and the CPB and nanoresonator are far-
detuned (i.e., ∆E - pω0 . λ). In this dispersive limit, the
interaction results in a shift of ω0 to ω( that is given by22,23

where ( indicates the qubit is in the excited or ground state,
respectively, and ∆E ) [(4Ec(1 - 2ng))2 + EJ

2]1/2. This state-
dependent resonance shift of a harmonic oscillator due to
the dispersive interaction with a two-level system is also well-
known in various systems such as circuit QED25,26 and cavity
QED.27

Degenerate parametric amplification or deamplification
is achieved by modulating the resonance shift ∆ω( ) ω( -
ω0 at twice of the nanomechanical resonance frequency.
From the perspective of the nanoresonator, the shift comes
from the change in the effective spring constant (keff). When
the effective spring constant is modulated at twice of its
resonance frequency, that is, keff ) k0 + δk cos(2ω0t), the
amplitude of the harmonic oscillator is amplified with re-
spect to that without the parametric modulation (or pump)
and the resulting gain G is given by12

where � is the phase of the force on the resonator at ω0

relative to the pump and a small δk is assumed (δk/k0 ≈ 2δω/
ω0). When � ) π/2, the gain is maximized and as δωf ω0/
Q, the resonator becomes unstable and self-oscillates. On
the other hand, when � ) 0, the gain is minimized and
approaches 1/2 as δω f ω0/Q. When the nanoresonator is

driven by a random noise force, this deamplification results
in noise squeezing.12

The sample micrograph and the measurement circuit are
shown in Figure 1a. The nanoresonator is the fundamental
in-plane mode of a doubly clamped silicon nitride beam. The
resonance frequency of this mode (ω0/2π) is 58.4 MHz. The
quality factor of the mode depends on the coupling voltage
to the measurement circuit (VNG) and it ranges from 3.8 to
5.8 × 104 for VNG ) 4 to 8 V. The CPB is connected to the
circuit ground by two small Josephson junctions in a DC-
SQUID configuration. The charging energy (EC/h) and the
Josephson energy (EJ0/h), were determined in a separate
spectroscopy measurement to be about 13 GHz.28The cou-
pling λ between the nanoresonator and CPB is adjustable by
DC voltage VN and it is 3.2 MHz at VN ) 16 V. The measure-
ment on the nanoresonator is done in an RF reflectometry
setup, utilizing a nearby gate electrode to actuate and detect
the motion.29 This is accomplished by applying both a DC
bias VNG and an RF bias with frequency near the nanome-
chanical resonance ω ≈ ω0. The resulting force on the
nanoresonator excites the motion. This in turn generates
current across the capacitance between the resonator and
the gate (CNG), which is amplified by a cryogenic amplifer at
4 K and then sent to room-temperature electronics for
measurement.28
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2
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FIGURE 1. Measurement setup and nanomechanical resonance shift
due to the interaction with CPB. (a) Scanning electron micrograph
of the device and the measurement circuit diagram. The sample
picture is colored to show different materials, silicon nitride (blue)
and aluminum (gray). The matched cryogenic amplifier (Z0 ) 50 Ω)
is modeled to have two uncorrelated sources of noise, SV for the
voltage noise density and SI for the current noise density. (b) Color
map of resonance frequency shift (∆f) versus CPB gate voltage (VG)
and flux (Φ) where Φ0 is flux quantum. (c) ∆f as a function of gate
voltage (blue circles), representing the constant-flux cross-section
that is indicated in (b) by the vertical dashed line. Red line displays
a fit of the data to eq 2. Green cross is the bias point at which
parametric response measurements are performed.
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Figure 1b is the measured resonance shift ∆f )(ω- - ω0)/
2π when the qubit is in the ground state, plotted as a function
of the flux Φ applied to the qubit and the qubit gate voltage
VG ) 2qeng/CG (qe ) electron charge). In the map, we pick
the constant flux section (dashed vertical line in Figure 1b)
where the frequency shift at the charge degeneracy is a
maximum. The resulting trace of ∆f versus VG is shown in
Figure 1c and fits well to the expected dependence given
by eq 2. This fit gives EC/h ) 12.5 GHz and λ/h ) 3.2 MHz,
which agree respectively with the spectroscopic measure-
ments28 and an estimate based on finite element simulations
(see Supporting Information). To maximize the dynamic
range of the parametric pump, we fix VG so that ∆f is half of
the value at degeneracy (the bias point is denoted by the
green cross in Figure 1c). At this bias point, the parametric
pump modulation is given approximately by δω/2π ≈ ∂(∆f)/
∂VG·V2ω, where ∂(∆f)/∂VG is the linear parametric response
and V2ω represents a small modulation of qubit gate bias.
From the measured dependence of ∆f on VG, we calculate
numerically ∂(∆f)/∂VG ) 1.1kHz/mV. To compare this with
the geometric capacitance effect of the qubit gate, we sweep
VG and separately measure the resonance shift without
coupling to the qubit (VN ) 0 V). We measure ∂(∆f)/∂VG )
0.3 Hz/mV, approximately a factor of 3000 smaller than the
parametric response using the CPB.

After setting VG and Φ, we turn on the resonator excita-
tion Vωcos (ω0t + �) and apply the pump V2ωcos (2ω0t) to
the CPB gate electrode. Figure 2a shows a typical sweep of
nanoresonator amplitude vs �. A clear periodicity in � with
period π is observed in good agreement with eq 3. In Figure

2b, � is set at π/2 and V2ω is swept for three different values
of resonator excitation Vω. For pump amplitudes up to V2ω

= 0.8 mV, the data fits well to eq 3 and indicates that the
threshold for self-oscillation is 1 mV. Well above this thresh-
old, in Figure 2(c), we clearly observe regions in the qubit
parameter space, centered about maxima in |∂(∆f)/∂VG|,
where the nanoresonator becomes unstable and self-oscil-
lates.

It is evident from Figure 2b, that the parametric gain
saturates above V2ω ) 1 mV. Gain saturation occurs at lower
values as the resonator excitation Vω is increased, occurring
at approximately the same mechanical amplitude for each
value of Vω. For pump amplitude V2ω ) 1.2 mV, we estimate
the saturation amplitude to be x ) 9 pm. This is much
smaller than the critical amplitude for the elastic Duffing
nonlinearity,30 which we estimate to be 1.4 nm. Higher-
order terms in the parametric response ∆f(VG) are also too
small to account for the saturation. We believe that the
saturation can be explained by a general model30-32 that
incorporates a nonlinear damping force ηx2ẋ on the nan-
oresonator. Such dissipative effects have been observed in
similar parametrically driven mechanical resonators by
other groups,33 and an analogous nonlinear damping is
known to exist in superconducting microwave resonators.34

We use secular perturbation theory30 to account for the
additional nonlinear damping and derive the nanoresona-
tor’s amplitude X in response to a harmonic force F cos(ω0t),
finding it to satisfy

where δkc is the amplitude of the spring constant modulation
at the self-oscillation threshold. From a fit of the data over
the full range of V2ω in Figure 2b to eq 4, we estimate the
nonlinear dissipation coefficient to be η ≈ 8 × 109 kg/m2s.
This is within an order-of-magnitude of an estimate of η ≈
1 × 109 kg/m2s, which we calculate numerically from the
measured dependence of nanoresonator damping versus
qubit gate voltage VG (see Supporting Information). Further
experiments and analysis are necessary to understand the
dependence of the resonator damping on qubit gate voltage
and the limitations it imposes on the performance of the
amplifier.

The phase dependence of a degenerate parametric am-
plifier can be utilized to deamplify one quadrature compo-
nent of the input signal and reduce or “squeeze” the noise
that accompanies the signal along that quadrature.12 We
demonstrate this effect using our qubit-based parametric
amplifier in degenerate mode to squeeze the back-action
noise emanating from the capacitive detection circuit onto
the nanoresonator. This excess back-action is due to input
voltage noise of our cryogenic amplifier (noise temperature
∼30 K). With the pump and drive voltage turned off, these

FIGURE 2. Parametric amplification and oscillation. (a) Parametric
gain versus phase of the resonator excitation. The blue circles are
data taken at V2ω ) 0.8 mV and the red line is a fit to eq 3. The
amplitude is normalized by the amplitude when V2ω ) 0 V and is
expressed in dB. (b) Parametric gain versus pump amplitude. From
top to bottom, the circles correspond to the measured gains with
Vω ) 3.6, 6.3, 11 nV. The black dashed line is a fit to eq 3 with � )
π/2. The solid lines over circles are the fits to eq 4. (c) Map of the
parametrically driven resonator amplitude with Vω ) 0 V and V2ω )
1.6 mV, demonstrating self-oscillation in regions of CPB parameter
space where the parametric response is maximum.
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voltage fluctuations drive the nanoresonator out of equilib-
rium with the thermal environment at 130 mK to an effec-
tive temperature about 8 K given by the peak height (Sx,BA)
of noise spectrum in Figure 3a (see Supporting Information).
With the pump on, we observe the expected squeezing effect
using an RF lock-in to monitor both quadratures of the
nanoresonator’s motion as a function of the reference phase
�, Figure 3b. Deamplification of each quadrature occurs with
the expected π/2 phase difference between quadratures and
yields maximum squeezing of 4 dB.

This qubit-based amplification and squeezing technique
is the first demonstration of the use of a qubit as an auxiliary
system to manipulate the state of nanomechanical motion,
albeit classical motion. In future experiments, quantum state
engineering of the mechanics will be possible by replacing
the present capacitive read-out circuit with a low-loss super-
conducting microwave resonator (SWR). Through a capaci-
tive coupling of each element to the nanoresonator, inde-
pendent manipulations of either or both the qubit and SWR
could then be used to tailor a specific nanoresonator Hamil-
tonian.20 This would enable the production of a large variety
of quantum states including vacuum squeezed states and
superposition states.

Generating such states would require reducing the ther-
mal occupation number N of the nanomechanical mode
close to its quantum ground state (i.e., kBT < pω0). The
quantum ground state of a 6 GHz micromechanical resona-
tor was recently demonstrated using conventional dilution
refrigeration,35 and also for a nanoresonator similar to what
is described in this paper, N ) 3.8 has been reached using
dynamical back-action cooling from a SWR.15 With a nan-
oresonator cooled to low occupation numbers, a vacuum
squeezed state of the mechanics could be prepared by
utilizing the qubit squeezing technique demonstrated here.
Subsequent operations on the qubit applied through a series
of microwave pulses could then be used to engineer the
nanoresonator interaction Hamiltonian g(â†â)2 and to gener-
ate a superposition of the squeezed states.20 Implementation
of this superposition protocol will require nanoresonator

interaction strength g that exceeds both the qubit damping
γ and nanoresonator damping Γ. For the present sample,
we estimate g = 2 kHz, Γ ) 1.1 kHz, and γ = 1 GHz.28

Modifications to the geometry of the sample can yield a
factor of at least 10 increase in the electrostatic coupling λ
resulting in g = 200 kHz, which is approaching the lower
limit of qubit damping rates demonstrated in circuit-QED,
γ < 1 MHz.26

In conclusion, we have demonstrated parametric ampli-
fication of nanomechanical motion using the nonlinearity
of a driven CPB qubit. The dispersive nanomechanical
resonance shift provides significantly more efficient para-
metric pumping mechanism than existing techniques for
nanomechanical parametric modulation. We have per-
formed a proof-of-principle experiment to show that this
parametric effect can be used to squeeze nanomechanical
motion. Integrating a superconducting microwave resonator
with this system should enable the preparation and observa-
tion of quantum squeezed states and superposition states
of the mechanics.
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