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Nanomechanical resonators with high aspect ratio, such as nanotubes and nanowires are of interest
due to their expected high sensitivity. However, a strongly nonlinear response combined with a high
thermomechanical noise level limits the useful linear dynamic range of this type of device. We
derive the equations governing this behavior and find a strong dependencef~dÎsd/Ld5g of the
dynamic range on aspect ratio. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1929098g

The limits of mechanical detection with nanoelectrome-
chanical systemssNEMSd are being actively pursued for
sensing applications, such as the attainment of sub-atto-
newton force sensing for magnetic resonance force
microscopy,1 sub-attogram mass sensing,2,3 mechanical
single spin detection,4 or the study of mechanical motion
approaching the quantum regime.5–8 Applications like these
require both high responsivity and ultra-high-frequency
operation.9 Both can be attained simultaneously with small
diameter, large aspect ratio doubly clamped resonators.
Nanoscale materials such as carbon nanotubes or nanowires
are a natural choice for these resonators due to their intrinsic
small size. We recently reported a bottom-up nanomechani-
cal resonator, a Pt nanowire, and found that it takes a very
low driving power to bring this device into the nonlinear
regime.10 Here, we show how the onset of this nonlinear
regime decreases with decreasing diameter, while the ther-
momechanical noise increases with aspect ratio. We con-
clude that the useful linear dynamic range of such devices is
severely limited, with the result that many applications will
involve operation in the nonlinear regime.

A typical layout for a doubly clamped nanomechanical
resonator is shown in Fig. 1. The resonator can be driven and
detected in several ways, e.g., magnetomotively,11 or
optically.12 The driving forcefstd leads to a time dependent
bending profilezsx,td, which can be found by solving the
differential equation

Lfzsx,tdg = EIzxxxx− ST0 +
EA

2L
E

0

L

zx
2 dxDzxx

+ rAztt − fsz,td = 0 s1d

with boundary conditionszs0d=zsLd=zxs0d=zxsLd=0. Here,
A is the cross-sectional area,E is Young’s modulus,r is the
density, andI is the moment of inertia about the longitudinal
axis of the beam. The term in between brackets describes
tension in the beam, and is a sum of residual tensionT0 and
a bending-induced tension, respectively.

Since Eq.s1d cannot be solved exactly we use the Galer-
kin discretization procedure,13 representing the solution to
Eq. s1d in terms of a linearly independent set of basis func-
tions fnsxd where each basis function satisfies the boundary

conditions. The error associated with this approximation
technique is

e= LFo
n=1

N

znstdfnsxdG − Lfzsx,tdg. s2d

The Galerkin procedure requires this error to be orthogonal
to each basis function, or in other words, the error is a re-
sidual that cannot be expressed in terms of the given finite
set of basis functions:

E
0

L

efnsxddx = 0. s3d

We are interested in the response of the beam at reso-
nance when the first mode is dominant, so it suffices to con-
sider the casen=1. For a doubly clamped beam, the simplest
function that approximates the first mode isf1sxd=Î2/3f1
−coss2px/Ldg.14,15 The normalizationÎ2/3 ensures that the
time dependent amplitudez1std we find is the root mean
square displacement averaged over the length of the beam
snot timed.

Performing the integration and noticing thatLfzsx,tdg
=0 as given in the Eq.s1d, we arrive at the Duffing-type
equation describing the time-varying behavior of the system:

z̈1std + v0
2z1std + az1

3std = 0,

with

v0 =
4p2

L2 Î EI

3rA
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E

18r
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D4
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for free vibrations of the elastic beamhffzsxd ,tg;0j. The
resonant frequencyv0 obtained in this approximation is
slightly higher than the exact value. We add a phenomeno-
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FIG. 1. Schematic representation of a doubly clamped nanomechanical reso-
nator of lengthL and diameterd. An applied force leads to a bending profile
zsxd as indicated.
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logical damping termż1v0/Q to Eq. s4d, where Q is the
mechanical quality factor as obtained in the linear regime.
Then the critical amplitude for the onset of nonlinearity is13

ac = v0
L2

p2
ÎrÎ3

EQ
. s5d

The critical amplitude describes at what displacement non-
linearity sets in: a smaller value ofac signifies an earlier
onset of nonlinearity and generally a stronger nonlinear be-
havior. A nanotube or a nanowire can be well described by a
cylindrical rod with diameterd:A=pd2/4 and I =pd4/64.
We parametrize a rectangular beam with widthd in the di-
rection of motion and thicknesst, yielding A=dt and I
= td3/12. This gives us
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A typical response of a Duffing oscillator described by
Eq. s4d is shown in Fig. 2. At low driving strength, the am-
plitude has the Lorentzian shape from the linear regime. In-
creasing the driving strength causes the peak to be pulled
over to high frequencies at high amplitudes. A common defi-
nition of the onset of nonlinearity is the 1 dB compression
point, i.e., the point at which the signal is 1 dB lower than
expected for the case of purely linear response. At resonance,
this happens whenapeak=0.745ac, which is the lowest solid
curve in Fig. 2. This sets the upper limit of the useful linear
range.

The lower limit of the dynamic range is set by the inco-
herent sum of all stochastic processes driving the resonator,16

such as thermomechanical fluctuations, quantum noise, noise
from adsorption and desorption of gaseous species,17 and
extrinsic sources such as vibrational and instrumentalsread-
outd noise. For simplicity, and in the spirit of considering
ultimate thermodynamic limits, we solely consider thermo-
mechanical noise. The spectral density of displacement noise
on resonance is

Sx =
4kBTQ

mv0
3 , s7d

wherem is the total resonator mass,m=prLd2/4.
We now define the useful dynamic rangesDRd as the

ratio of the 1 dB compression points0.745acd to the noise
amplitude at resonance

DRsdBd ; 20 logS0.745ac

Î2SxDf
D , s8d

whereDf is the measurement bandwidthsDf =1 in Fig. 3d,
and theÎ2 comes from the conversion ofac to rms.

For the moment neglecting the residual tensionT0,

DR = 20 logF2.41dSd

L
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Q2kBTDfÎr
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DR = 20 logF3.9ÎdtSd
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It is apparent that the dynamic range depends strongly on the
aspect ratioL /d and directly on diameter. Figure 3 shows the
dynamic range plotted for several device geometries of inter-
est: a single-wall carbon nanotubesSWNTd, a multiwall car-
bon nanotubesMWNTd, a Pt nanowire,10 and a SiC rectan-
gular beam18 with parameters as given in Table I. We assume
a mechanical quality factorQ for MWNT and SWNT of
about 1000, although room temperature measurements19 in-
dicate a lower value. The dynamic range is very limited, and

FIG. 2. Solid lines indicate typical response of a Duffing oscillator as a
function of frequency with increasing driving strength. The solid lines are
plots of equation 2Qsv−v0d /v0= 2

3
Î3a2/ac

2±Îapeak
2 /a2−1, whereac is cho-

sen 1, forapeak=0.745, 2/Î3, 2. sRef. 13d. The dashed line is a plot for
apeak=0.1, indicating an arbitrarily chosen rms noise floor.

FIG. 3. Dynamic range at 4 K for several doubly clamped resonators as
indicated in the figure and Table I. The shaded region below 0 dB indicates
the absence of a linear region of operation.

TABLE I. Input parameters for Fig. 3.

d snmd r skg/m3d E sTPad Q

SWNT 1.4 1930 1 1000
MWNT 20 1930 1 1000
Pt nanowiresRef. 10d 43 21 060 0.168 8500
SiC beamsRef. 18d 150st=100d 2880 0.430 8000
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in the case of SWNTs even drops below 0 dB above a length
of 2 mm, which renders the device useless as a linear detec-
tor. It is worth nothing that a change in temperature or mea-
surement bandwidth shifts these curves along the vertical
axis, but does not change the scaling behavior. Generally, the
resonator with the smallest diameter will have the smallest
dynamic range.

We now discuss the effect of residual tensionT0. It may
arise from differential thermal contraction,10 or may be in-
duced by a dc voltage on a gate nearby.20 Increasing tension
will increase the resonant frequency. We therefore account
for the presence of tension by usingac from Eq. s5d;

DR = 20 logS3.08
sf0Ld5/2dr

QÎEkBTDf
D , s10d

where v0;2pf0. The dynamic range can therefore be in-
creased or decreased through a change in resonant frequency
due to tension. An upper limit to the frequency tuning is set
by how high tension can be before deforming, breaking, or
irreversibly pulling the resonator to the gate.21 This places an
upper limit on the available dynamic range, but that limit is
strongly dependent on the actual sample geometry, tuning
mechanism, and material properties, and is therefore not
treated here.

It has been observed that the mechanical quality factorQ
also depends on the dimensions of the resonator, which
would alter the scaling behavior presented in this letter. For
instance, in an empirical study, it was shown thatQ scales
roughly as the inverse of the surface to volume ratio.22 In
another study, it was shown that extra dissipation may also
arise from eddy current damping11 which scales assQ−1

−Q0
−1d~ sL /dd3, whereQ0 is the quality factor without eddy

current damping. Many other dissipation mechanisms exist,
and it is therefore difficult to derive a general scaling law of
Q with sample parameters.

Finally, we note that for singly clamped cantilevers, the
nonlinearity generally sets in at a larger amplitude than in the
doubly clamped beams we discuss. This is due to different
sources of nonlinearity in cantilevers: the nonlinearity due to
curvature rather than tension dominates for the fundamental
mode of the cantilever.23 If nanowires and nanotubes are
used in AFM-type tapping mode, nonlinearities in tip–
surface interaction become important as well.24

We have shown that for large aspect ratio resonators, one
is forced to work close to the nonlinear regime or even in it,
a rather undesirable situation for using nanoresonators as lin-
ear sensors. This new nonlinear regime that promises to
dominate the nanoscale beyond the conventional dynamic
range, however, might offer as yet unexplored opportunities
for noise reduction and signal enhancement in nanoresona-
tors. Charge detection is one such application. Charge can be
detected at a fraction of a single electron in the mechanical
domain,6,25 since the presence of charge on a gate nearby
shifts the resonant frequency. By operating the resonator at

the onset of nonlinearity close to the infinite negative slope
dA/dv at ac in Fig. 2, the charge sensitivity can be increased
drastically, as suggested by Krömmeret al.26 Another appli-
cation of nonlinear mechanics is to use the nonlinear resona-
tor as the frequency stabilizing element in a feedback loop. It
has been shown that the long term phase stability of such an
oscillator can be improved considerably with this
technique.27
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