Frequency fluctuations in silicon nanoresonators

Marc Sansa1,2, Eric Sage1,2, Elizabeth C. Bullard3, Marc Gély1,2, Thomas Alava1,2, Eric Colinet1,2†, Akshay K. Naik4, Luis Guillermo Villanueva5, Laurent Duraffourg1,2, Michael L. Roukes3, Guillaume Jourdan1,2 and Sébastien Hentz1,2*

Frequency stability is key to the performance of nanoresonators. This stability is thought to reach a limit with the resonator’s ability to resolve thermally induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest. However, their existence is very difficult to demonstrate experimentally. Here, through a literature review, we show that all studies of frequency stability report values several orders of magnitude larger than the limit imposed by thermomechanical noise. We studied a monocrystalline silicon nanoresonator at room temperature and found a similar discrepancy. We propose a new method to show that this was due to the presence of frequency fluctuations, of unexpected level. The fluctuations were not due to the instrumentation system, or to any other of the known sources investigated. These results challenge our current understanding of frequency fluctuations and call for a change in practices.

Nano-electro-mechanical systems (NEMS) have demonstrated their tremendous potential for both basic science and industrial applications. These systems have opened a new window into the realm of quantum physics1,2 and nonlinear dynamics3,4, and allow record limits of detection in high-performance force5 and mass6 sensing. These records have been achieved through extreme miniaturization, thanks to the advent of carbon nanotubes (CNTs) and graphene monolayer sheets. Indeed, the minimum mass (or force) detectable by a resonator is proportional to its total mass (or stiffness). This limit of detection is also proportional to the measurement uncertainty of the resonance frequency, \( \delta f_0 / f_0 \), so much work has been dedicated to determining the limits of the frequency stability of nanomechanical resonators7,8. Frequency stability can be affected by noise added to the signal amplitude, provoking jitter in the phase (hereafter ‘additive phase noise’), or by fluctuations in the device’s overall mechanical response, inducing spectral broadening and resonance frequency fluctuations (hereafter ‘frequency fluctuations’)9.

The frequency stability and limit of detection for a device are commonly predicted based on the dynamic range (DR) measured10–12 (the ratio between the maximum driven signal level and the noise floor expressed in dB) by applying the simple formula\(^1,14\) \( \delta f_0 / f_0 = (1/2Q)^{10} \text{DR/20} \). Additive phase noise generally comes from the device being coupled to a thermal bath. The DR formula implies that, for a given drive level, frequency stability is maximized when the random motion of a resonator driven by thermomechanical noise can be resolved, which has led to considerable efforts over the past decade to design nanoscale systems in which transduction is efficient13,15,16. However, the formula holds true in conditions where frequency fluctuations can be neglected, which is almost never achieved, partly because it is not trivial to distinguish additive phase noise from frequency fluctuations17–19. Nevertheless, numerous sources of frequency fluctuations have been described theoretically, including adsorption–desorption noise20,21, temperature noise due to finite heat capacity22, defect motion23, and molecule diffusion along the resonator24. Although this issue has attracted considerable theoretical interest, very few experimental studies have observed the signature of one or more of these sources of fluctuations25–27. Instead, fluctuations in device temperature, in charge state or in stiffness due to signals in the instrumentation are thought to explain most observations of frequency fluctuations28,29. Moreover, these observations were only possible at low temperature with devices particularly susceptible to fluctuations, such as ultrahigh-Q devices28 or CNT29 and graphene membranes30.

We begin this Article with a comprehensive review of published frequency stability studies. This review reveals that the limit imposed by thermomechanical noise has never been reached across a wide range of devices and that the experimentally observed frequency stability values exceed the thermomechanical noise limit by several orders of magnitude. To better understand this phenomenon, we tested a canonical, CMOS-compatible monocrystalline silicon nanoresonator and found a discrepancy of similar magnitude at room temperature, even though thermally induced vibrations were not due to the instrumentation, nor to any other of the known sources. These results call for further investigation of the microscopic mechanisms causing frequency fluctuations, which had not been observed in semiconductor-grade silicon resonators and oscillators. In light of these findings, many past experiments and predictions of frequency stability or limit of detection made based on the DR formula, which only considers additive phase noise, must be revisited.

Literature review

In this work, the frequency stability \( \delta f_0 / f_0 \) was estimated with the Allan deviation \( \sigma_A \) (see Methods)\(^36\). This metrology standard is
suggest that extrinsic sources of frequency was seldom discussed; in two cases31,41, the signal-to-noise ratio (SNR)
beams35,44 and two to the
detection22,29,30,32,42,43, capacitive40,41,46, magnetomotive36
Similarly, no differences due to transduction techniques, optical
limit at a temperature of 300 K for the frequency determination (orange)
and thermomechanical
orders of magnitude in device mass) and technologies:
the articles reviewed encompass a large range of dimensions (over 15
total mass of the different devices studied. We have tried to be
exhaustive in our review of stability studies on nanoscale resonators.
The articles reviewed encompass a large range of dimensions (over 15
orders of magnitude in device mass) and technologies: flexural-mode
micro-resonators (MEMS), top-down nanoresonators (NEMS) and
bottom-up nanoresonators (CNTs and graphene devices). The
reported frequency stabilities are compared with the limit imposed by
the theoretical thermomechanical noise, estimated with the DR
formula. To improve this comparison, a normalization factor for
temperature and pressure was applied across studies (Supplementary
Section 1).

Despite the considerable experimental variety, Fig. 1 shows a very clear picture: none of the studies reviewed attained the frequency stability limit set by thermomechanical noise. The experimental results were always at least an order of magnitude greater than the theoretical limit, and on average 2.1 orders of magnitude greater (the same conclusions can be drawn from the non-normalized data, Supplementary Fig. 2). Interestingly, this observation holds true from MEMS to CNT resonators, even though dynamic range decreases with device size27; the best linear fits of both experimental stability and thermomechanical limit scale similarly for all device types at \( \sim m^{-1/2} \). The discrepancy has been noted across a large variety of designs and resonating modes. Of the 25 data points, six correspond to the flexural mode in clamped-free beams16,28–32, 15 to the flexural mode in doubly-clamped beams (three of which were tensile stressed)6,11,22,35–43, two to the flexural mode in pinned beams32,44 and two to the flexural mode in thin membranes35,36. Similarly, no differences due to transduction techniques, optical detection12,29,30,32,42,43, capacitive40,41,46, magnetomotive36–38, piezoelectric12,41, piezoresistive16,34–35,39 or field-effect-modulated conductance11,28,33,40 were observed. The limiting factor in frequency stability was seldom discussed; in two cases11,41, the signal-to-noise ratio (SNR) was limited by the amplifier noise, and in some others, the authors suggest that extrinsic sources of frequency fluctuations—such as noise in the drive signal or temperature fluctuations9,44—may dominate. Nevertheless, it remains intriguing that, despite the great effort expended to do so (particularly in the ‘NEMS’ subgroup), the thermomechanical noise limit was never reached in any case. This huge discrepancy was never discussed, nor was the validity of the DR formula. We believe that further exploration of the issue is warranted and we provide it in this article with a simple device made from a high-quality material.

**Frequency stability in monocrystalline Si resonators**
To follow up on the conclusions from the literature review, a series of experiments were performed on monocrystalline silicon resonators fabricated from silicon-on-insulator wafers with very large-scale integration processes16, at room temperature (unless otherwise stated) and a typical pressure of \( 1 \times 10^{-7} \) torr. The resonators were electrostatically actuated and used a differential piezoresistive readout (Fig. 2a). The down-mixing set-up used was sensitive enough to measure the thermomechanical noise of the resonator, which was 2.5 times larger than our experimental noise floor (Fig. 2b) and yielded a very large linear dynamic range (~107 dB for 1 s integration time, Supplementary Fig. 3). These features make these resonators high-performance gravimetric sensors47. Fabrication and measurement details can be found in the Methods and in Supplementary Sections 2 and 3.

The resonance frequency of the resonator was deduced from its open-loop phase fluctuations (see Methods). The resulting experimental Allan deviation \( \sigma_\alpha \) is illustrated by the solid lines in Fig. 2c, for integration times covering five orders of magnitude.

The dashed lines in Fig. 2c show the theoretical Allan deviation, which would be expected in a regime where additive phase noise dominates the frequency stability, based on the DR formula14 expressed in the voltage domain:

\[
\sigma_\alpha \approx \frac{N_T}{2Q} \frac{1}{S} \sqrt{\frac{1}{2\pi T}}
\]

where \( Q \) is the quality factor of the resonator (for details see Supplementary Section 4), \( S \) is the amplitude of the output signal at the resonance frequency for each drive (in V, Supplementary Fig. 3), \( N_T \) is the noise level at the output (32 \( nV\ Hz^{-1/2} \) in the present case), and \( T \) is the integration time (1/2\( \pi \) or the measurement bandwidth with a first-order low-pass filter). The SNR for the measurement is therefore \( (N_T/S)\sqrt{2\pi T} \) (equal to phase fluctuations, Supplementary Fig. 5). For dominant additive white noise, the expected Allan deviation scales as \( T^{-1/2} \) and is inversely proportional to the output signal \( S \).

Figure 2c clearly shows that equation (1) accurately describes the frequency stability of our resonators for short integration times and low drive amplitudes. This result suggests that, within this range, the system is in a regime where additive phase noise dominates frequency stability. However, at higher drive amplitudes and for longer integration times, the experimental observation significantly deviates from the expected behaviour. The red line in Fig. 2c indicates the lower bound for resonator frequency stability, which cannot be improved below this limit by increasing the drive amplitude. The Allan deviation first increases and subsequently varies little with integration time. This latter behaviour is consistent with plots of power spectral density (Supplementary Fig. 6), where the major trend appears to be a slope of \( 1/f \) for high drive. As a result, the limit of detection for this NEMS is more than two orders of magnitude higher than expected for a typical measurement time of 100 ms. These results are consistent with the presence of frequency fluctuations (see also in-phase and quadrature plots in Supplementary Fig. 7). Nevertheless, these fluctuations were quite unexpected for devices made from a high-quality material like monocrystalline silicon. Moreover, the level of the discrepancy—several orders of magnitude—is even more surprising given that
The frequency stability of our monocrystalline silicon nanomechanical resonators is limited by a source of noise exceeding thermal fluctuations. The measurements were performed at room temperature in relatively straightforward experimental conditions. A similar discrepancy was observed in all our experimental set-ups, regardless of location, as well as with doubly-clamped beam resonators fabricated using the same technology (Supplementary Fig. 8).

**Nature of excess noise in silicon resonators**

The lower bound for the Allan deviation (red line in Fig. 2c) does not depend on drive level. This would be the case in the presence of a source of frequency fluctuations which would add to the additive noise-limited stability in equation (1):

$$
\langle \delta f \rangle = \left( f_0 / 2Q \right) \left( N_f / S \right) \sqrt{(1/2\pi)} + N_P.
$$

It would also be the case if the additive noise was proportional to the signal amplitude ($N_P \propto S$ in equation (1)). This is illustrated in Fig. 3 and Supplementary Section 4. The presence of nonlinear damping could also limit the improvement of frequency stability with increasing drive, but our devices do not display any significant nonlinear damping (Supplementary Fig. 3). It should be noted that spectral broadening is not observed with our devices either: ring-down measurements give the same linewidth as the spectral measurements (Supplementary Fig. 17).

White noise probed simultaneously at two different frequencies is uncorrelated; conversely, frequency fluctuations induce a shift in the whole frequency response of the resonator. Thus, probing noise at two different frequencies within the resonator’s bandwidth should show strong correlation in the case of dominant frequency fluctuations (Fig. 4a). The correlation properties of the observed noise were therefore studied as a function of integration time and drive amplitude.

Two distinct frequency traces were simultaneously recorded and their stability was assessed by plotting their Allan deviation (Fig. 4a; see Methods and Supplementary Fig. 9). The result (Fig. 4b) was very consistent with the results shown in Fig. 2c and was almost identical for the two frequency traces (Supplementary Fig. 10). We computed the correlation of the pair of frequency traces (see Methods) from this data set (Fig. 4b).

The correlation is thus closely linked to the integration time and the drive voltage. Figure 4 clearly indicates that the signals are weakly correlated when the dominant noise is additive white noise (low drive levels) and strongly correlated when the excess noise is dominant (that is, at long integration times for low drive levels or over the whole time range for high-enough drive levels).
Control measurements were also taken, choosing the two sideband frequencies out of resonance (but maintaining a constant difference). In these conditions, no correlation was observed whatever the drive voltage (Fig. 4b and Supplementary Fig. 11). The only difference between this control and the in-resonance measurements was the almost total absence of mechanical response in the control. This result indicates that the limit in frequency stability observed with our silicon nanomechanical resonators is due to fluctuations of the resonator’s overall frequency response in the mechanical domain, that is, frequency fluctuations (as opposed to some type of noise in the measurement system downstream of the piezoresistive transduction).

Figure 3 | Additive phase noise and frequency fluctuations show different features in the Allan deviation. Effect of different noise sources on the frequency stability as a function of integration time $\tau$ and for different signal levels. 

- **a**: Additive white noise, manifesting itself as phase noise. This presents a constant slope of $\tau^{-1/2}$. The stability improves with increasing signal level.
- **b**: Combination of additive white and $f^{-1}$ noises. For low integration times it presents a slope of $\tau^{-1/2}$, which becomes $\tau^0$ when the $f^{-1}$ noise dominates at large integration times. The stability improves with increasing signal level in the whole time range.
- **c**: Combination of additive white noise with $f^{-1}$ frequency fluctuations. For low integration times it presents a slope of $\tau^{-1/2}$, which becomes $\tau^0$ when the $f^{-1}$ frequency noise dominates. Moreover, the stability due to frequency fluctuations is insensitive to the signal level, so an increase in the signal has an effect only when additive noise dominates.

Figure 4 | The limit in frequency stability of our silicon resonators is due to frequency fluctuations. 

- **a**: The resonator was actuated at two different frequencies within its bandwidth, typically at ±1 kHz from the central resonance frequency. The stability of each independently obtained frequency trace was estimated from the open-loop phase information ($f(t) \propto \phi(t)$ for small deviations from the resonance frequency). An additive white noise source is uncorrelated at different frequencies. Response signals measured at different frequencies within the bandwidth are then also uncorrelated. In contrast, frequency fluctuations shift the whole frequency response of the resonator. Response signals measured at different frequencies are then strongly correlated.
- **b**: Top: Allan deviation of one of the frequency traces obtained using this measurement method. The other trace presents very similar stability results (Supplementary Fig. 10). The results are consistent with the single-frequency measurements shown in Fig. 2c. Bottom: correlation between the two simultaneous frequency traces for the same sample set. As expected, the correlation was weak when the noise was dominated by additive phase noise (low drive amplitudes), but the correlation was high at long integration times. This time range depends on the drive level. The ‘control’ curve shows the same experiment performed out of resonance, at maximum drive voltage. These results indicate the existence of fluctuations of the whole frequency response of the resonator, that is, frequency fluctuations.
Figure 5 | The limiting frequency fluctuations are not due to temperature fluctuations alone. a, Temperature dependence of the first two modes of the resonator, obtained by measuring their resonance frequency for a range of temperatures around 25 °C. Squares represent a coarse measurement for a wide range of temperatures, and triangles a detailed measurement around room temperature (−38.2 ppm °C−1, R2 error of 0.999 for the first mode; −29.1 ppm °C−1, R2 error of 0.997 for the second mode). Inset: detail of the sensitivity around room temperature (−36.4 ppm °C−1, R2 error of 0.993 for the first mode; −27.6 ppm °C−1, R2 error of 0.982 for the second mode). b, Frequency stability of the first mode before (orange) and after (green) temperature correction. Three regimes are clearly visible on this plot. In the white noise regime (τ < 10−3 s), temperature compensation slightly degrades frequency stability, as it is the addition of uncorrelated white noise of both modes (1 × 10−6 and 6.5 × 10−7 for τ = 1 ms, quadratically summing to 1.2 × 10−6; the temperature compensated deviation is found to be 1.25 × 10−6). With integration times of τ > 10−1 s, long-term drifts can be measured; in this region, stability was improved by compensation for temperature-induced drifts in resonance frequency. In the frequency fluctuations regime (10−3 s < τ < 10−1 s), no significant improvement was observed.

Figure 6 | Known sources of frequency fluctuations. Frequency fluctuations caused by different sources of noise and comparison with the thermomechanical noise limit (blue solid line) and experimental results (violet solid line) were estimated in a doubly clamped beam resonator. Frequency fluctuations arising from adsorption−desorption and surface diffusion were calculated using theoretical models. Thermomechanical noise is also a source of frequency fluctuations, through Duffing nonlinearity. The coupling between the amplitude of motion of mode 2 and the resonance frequency of mode 1 was experimentally characterized and the thermomechanical noise-induced vibrations of mode 2 are measured to quantify the resulting frequency fluctuations. The solid grey line indicates the sum of fluctuations due to these four sources of frequency fluctuations. This level of fluctuation is lower than the thermomechanical noise limit and orders of magnitude lower than the experimental frequency instability.

Physical origin of frequency fluctuations
In the vast majority of studies where frequency fluctuations were thought to explain experimental observations, the source of these fluctuations was noise due to the instrumentation18,24,25,39,44,48. In the present study we started by eliminating sources of noise present in the instrumentation, such as the frequency stability of the drive signal. Amplitude noise in this signal also leads to frequency shifts due to the nonlinear Duffing term in the equation of motion, or due to electrodynamically induced changes in stiffness. Similarly, the bias signal shifts frequency because of Joule heating. In our system, experimental characterization of these sources of frequency fluctuations showed that none of them could explain our observations (Supplementary Figs 12 and 13).

Variations in device temperature can also lead to frequency fluctuations, with a typical temperature coefficient of −50 ppm K−1. However, these fluctuations can be compensated by using the second mode frequency as a temperature probe. In our experiments, we tracked the frequency fluctuations of two modes and used the frequency fluctuations of one of these modes to correct for temperature-induced variations on the other. This correction did not significantly improve the Allan deviation (Fig. 5 and Supplementary Section 5).

Frequency fluctuations are also often attributed to molecules randomly adsorbing and desorbing onto/from the resonator, or diffusing along its surface. Models for these two sources exist and have been compared to experiments in past studies21 (Supplementary...
Section 6). Frequency fluctuations can also be caused by thermalization of higher-order modes through nonlinear mode coupling. The frequency of one particular mode depends on the vibration amplitude of the other modes because of stiffness-induced coupling (a particular case is the dependence of one mode frequency on the amplitude of motion of this mode via the Duffing term). The contributions of modes 1 and 2 are dominant in these coupling effects in our case (Supplementary Section 6). We therefore measured the amplitude-to-frequency relationships of the resonator’s first two modes and assumed thermally induced vibrations to assess the coupling effects. This analysis is summarized in Fig. 6, showing the Allan deviation induced by the sources discussed above. Although it would be useful to further investigate the mode coupling effect by studying the interrelation between the coupling and the decay rate of the contributing modes, our approach shows that each of the known sources tested, as well as the sum of all sources, is several orders of magnitude lower than the overall experimental frequency instability.

Few known mechanisms remain to be explored. Bulk and surface effects are likely to play an important role in the frequency fluctuations observed. Dielectric and charge fluctuations have been reported to cause frequency fluctuations in various microscopy probes due to interaction with nearby surfaces (at a distance of a few tens of nanometres). In the case of our resonator, charges can move on and off traps present at the surface of the silicon due to native oxide formation. This charge motion will induce frequency fluctuations through electrostatic stiffness. The magnitude of frequency fluctuations due to charge fluctuations is expected to vary considerably with the actuation gap (to the power of 3) and with drive voltage. However, we observed no measurable change with these parameters. Furthermore, unlike in highly stressed amorphous silicon nitride resonators, the number of defects in the bulk of pure monocrystalline silicon nanoresonators is too low to provide a significant source of frequency fluctuations due to defect motion. Nevertheless, two-level systems-like behaviour could still be encountered due to, for example, the doping levels used.

Conclusion

Frequency fluctuations have recently become a topic of considerable interest, mostly in basic research. These fluctuations are usually ignored in experiments aiming to assess nanoresonator performance in the numerous cases where the DR formula is used to predict performance. A careful review of most published frequency stability measurements for nanoresonators showed that none of them attained the limit set by thermomechanical noise and that the Allan deviation measured was on average more than two orders of magnitude higher than this limit. We investigated this point with a monocrystalline silicon nanoresonator and found a discrepancy of similar magnitude, even though random motion due to thermomechanical noise was well resolved in the absence of coherent drive. Study of the correlation properties of the excess noise indicated that the whole mechanical frequency response fluctuated. We also found that these frequency fluctuations were not due to the instrumentation, but rather originated in the mechanical domain of the device. Fluctuations were not due to temperature variations, or to a range of other known sources such as adsorption-desorption noise. These results call for further investigation of microscopic mechanisms that could induce such frequency fluctuations, which had not previously been observed in semiconductor-grade silicon devices. The measured magnitude of these fluctuations is all the more unexpected, in particular at ambient temperature and in the absence of complex experimental conditions. These results suggest that we need to rethink a number of accepted assumptions and make changes to current practices.

It is always assumed that increasing the signal or decreasing the additive phase noise (by, for example, improving transduction efficiency) improves frequency stability. This is not true in the presence of frequency fluctuations. Given the variety of devices used throughout the literature, it is possible that different mechanisms explain the limit found with different devices (Fig. 1). However, it is not unlikely that frequency fluctuations, whatever their physical origin, are ubiquitous and are a major performance limiter for many nanoresonators. To confirm this paradigm shift, we believe many past and future experiments should be examined in light of our findings; many frequency stability predictions should also be reviewed because they used the DR formula, which omits frequency fluctuations. For example, the following methodology could be followed. The additive noise floor of the system should first be assessed by measuring the output signal of the undriven device (Fig. 2b). The expected Allan deviation can be computed from this measurement for given drive levels. The corresponding experimental Allan deviations can be measured by recording the phase signal while driving the device at its resonance frequency. Plotting the Allan deviation is both simple and powerful to identify frequency fluctuations. These fluctuations can be further confirmed by the correlation technique proposed in this Article, which is a straightforward means to identify the presence of frequency fluctuations. Moreover, like the Allan deviation, it provides information on the temporal dynamics of these fluctuations at practical timescales. Finally, the contribution of instrumentation to these fluctuations should be assessed to examine the physical mechanisms behind fluctuations originating in the mechanical domain of the device.

A great deal of modern technology relies on the purity of semiconductor-grade silicon. For this reason, it is considered to have one of the highest mechanical qualities and it has thus recently become a commonly used material for commercial M/NEMS. Although significant experimental work remains to be done to elucidate the microscopic origin of the frequency fluctuations observed, our findings are of paramount importance for applications of a wide range of nano- (and possibly micro-) resonators, even those made of high-quality materials. Resonant mass (for example, traces of low-mass volatile compounds), force (for example, for scanning near-field optical microscopy or magnetic resonance force microscopy) or inertial sensing, as well as time-reference devices, will no doubt benefit from further work on this topic.

Methods

Methods and any associated references are available in the online version of the paper.

Received 9 July 2015; accepted 25 January 2016; published online 29 February 2016

References


Acknowledgements
The authors acknowledge partial support from the LETI Carnot Institute NEMN-MS project, as well as from the European Union through the ERC Enlightened project (616251) and the Marie-Curie Eurotalents outgoing (S.H.) and incoming (M.S.) fellowships. The authors thank C. Marcoux and C. Dupre for their support with device fabrication. L.G.V. acknowledges financial support from the Swiss National Science Foundation (PP00P2-146690) and the European Commission (PCIG14-GA-2013-631801). A.K.N. acknowledges financial support from the Indian Institute of Science, Bangalore.

Author contributions
M.S. performed all experiments and processed the data. M.S., G.J., A.K.N. and S.H. conceived and designed the experiments. L.G.V. and S.H. performed the literature review. M.S., G.J. and S.H. wrote the paper. All authors commented on the manuscript.

Additional information
Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Correspondence and requests for materials should be addressed to S.H.

Competing financial interests
The authors declare no competing financial interests.
Methods
Measurement of the frequency response and frequency stability. The frequency response of the resonators was measured using a down-mixing method, as described in detail in ref. 16. The device was electrostatically actuated, and the driving voltage was applied to a side gate parallel to the resonator. To reduce parasitic signals, the drive signal was set to half the actuation frequency $ω/2$, so the amplitude of motion of the resonator was proportional to the square of the actuation voltage. The motion of the resonator was detected differentially by two piezoresistive nanogauges. A bias voltage at $(ω + Δω)$ through the gauges was used to down-mix their resistance change (occurring at the actuation frequency $ω$) and the low-frequency readout signal at $Δω$ was detected using a lock-in amplifier. Typical measurement values were 1.5 V for the bias voltage at a measurement frequency of 500 kHz. All measurements were performed in a vacuum chamber at a pressure of $10^{-5}$ mbar and at room temperature. Thermomechanical noise was measured using the same set-up, with the drive electrode disconnected. Measurements were taken with a lock-in amplifier, which also generated the drive and bias signals.

The Allan deviation was measured in open-loop configuration, and the frequency stability was extracted from the response of the resonator actuated at resonance frequency with a fixed driving frequency. The phase of the measured signal, $\phi(t)$, was monitored for a certain amount of time, and then transformed into frequency fluctuations using the phase response of the resonator. Close to the resonance frequency, this phase response was linear, $(Δϕ/Δf) = (2Q/\omega_0)$. Using the complete phase response of the resonator instead of this linearization does not significantly alter the Allan deviation. Harmonics appearing at the frequency of the electricity supply (multiples of 50 Hz) were filtered out of data during post-processing.

Using this method, we obtained $N$ samples of the resonance frequency of the resonator $f_1, \cdots, f_N$, each averaged over integration time $τ$. The Allan deviation for this integration time could then be defined as

$$\sigma_A(τ) = \sqrt{\frac{1}{2(N - 1)} \sum_{i=1}^{N-1} \left( \frac{f_{i+1} - f_i}{f_0} \right)^2}$$

(2)

To obtain the frequency stability for higher integration times from the same set of frequency samples, we followed the standard method$^{26}$. Initial samples were averaged in groups of $n$ samples and the Allan deviation for the new array was calculated using equation (2) to determine $σ_A(τ_0)$. This process was repeated multiple times until the number of samples was too low to provide a statistically significant result.

Correlation measurements. Correlation measurements were performed by simultaneously measuring the response of the resonator at different frequencies within the resonator’s bandwidth. The measurement set-up was based on the one described in Supplementary Section 3, but here each signal was doubled, using two drive signals at different frequencies, two bias signals and two measurement signals (see Supplementary Fig. 9 for a detailed measurement scheme). Particular care was taken when choosing the drive signal amplitudes so that the resonator remained in the linear regime. Moreover, the two measurement frequencies were chosen to avoid crosstalk (for example, 302 and 367 kHz). Measurements were taken with the same lock-in amplifier input to ensure simultaneity. Although here we used a down-mixing set-up, correlation could also be measured with a homodyne method.

The phase traces were converted to frequency traces corresponding to the different integration times, as described above. Here, the complete phase response of the resonator was used rather than the linear approximation, as the frequencies for phase samples can be quite different from the resonance frequency. With this method we obtained two frequency sample arrays with an integration time $τ_0$.

The graph in Fig. 4b shows the correlation of these frequency traces versus integration time $τ$. We processed the signals so that the correlation for a given $τ$ only depends on frequency variations with characteristic time close to $τ$. For each $τ$ of the plot, we filtered the two frequency traces with a band-pass filter centred on $τ$. For a consistent correspondence between Allan deviation and correlation integration times, we chose the Allan deviation transfer function as the band-pass filter, defined as

$$|H_A(f)|^2 = \frac{2\sin^4 π f}{(π f)^2}$$

(3)

Finally, the correlation coefficient of the filtered frequency traces $f_1$ and $f_2$, each of length $N$, was defined by

$$\text{corr}_{f_1f_2} = \sum_{i=0}^{N-1} (f_1 - \bar{f}_1)(f_2 - \bar{f}_2) \frac{N_s f_1 f_2}{N_s f_1 f_2}$$

(4)

where $\bar{f}_1$ and $\bar{f}_2$ are the sample means of $f_1$ and $f_2$, respectively and $s_{f_1}$ and $s_{f_2}$ are their standard deviations.

Reference