
 

S U P P O R T I N G   I N F O R M A T I O N 

 

 

                                                                                                                                            1 

 

 

 

 

Large-scale integration of nanoelectromechanical 

systems for gas sensing applications 

 

I. Bargatin1,2†, E.B. Myers1, J.S. Aldridge1‡, C. Marcoux2, P. Brianceau2, L. Duraffourg2, 
E. Colinet2, S. Hentz2, P. Andreucci2, M.L. Roukes1 

1Kavli Nanoscience Institute and Department of Physics, Caltech, Pasadena, CA 
2CEA/LETI - MINATEC, Grenoble, France 

 

 

Fabrication Procedure 

The NEMS arrays employed in this work were fabricated from CMOS-compatible materials 
using state-of-the-art microelectronic lithography and etching techniques with nanoscale 
alignment. The high-frequency (HF) NEMS arrays were fabricated from a 200-mm SOI 
wafer with 160-nm-thick silicon layer (resistivity ≈ 10 Ω.cm) and 400-nm-thick buried 
oxide layer. The metal film — a proprietary alloy fully compatible with CMOS — was 
deposited by sputtering technique at 175°C. Its thickness varied between 45 and 70 nm 
depending on the design. Optical deep ultraviolet (248 nm wavelength) lithography was 
then used to pattern the thin-film metal features: wirebonding pads, lead-frame, and the 
NEMS array itself. We were able to achieve a better than 200-nm resolution in a 
reproducible way using a positive resist and a bottom anti-reflective coating (BARC). 

The exposed areas of the metal film were etched using reactive ion etching (RIE) in boron 
trichloride (BCl3) and argon (Ar) plasma. The resulting metallization layer served as a mask 
for the subsequent CF4 plasma etching of the 160-nm-thick silicon structural layer down to 
the buried oxide. In some designs, additional lithography steps were performed to define 
bare-silicon (metallization-free) areas on beams or cantilevers before the final silicon 
etching. In this case, the accuracy of alignment between the lithography levels was better 
than 30 nm (Fig. S1). In some designs, the metal layer on the bonding pads and lead-frames 
was thickened to 650 nm to facilitate the wirebonding procedure, decrease the access 
resistance, and improve the impedance matching. 

Finally, the NEMS cantilevers or beams were suspended using a vapor HF etch step that was 
carefully timed to minimize the undercut of the anchors. The arrays were typically etched 
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for 6 hours at 32 °C in HF vapor concentration of approximately 10%, resulting in silicon 
dioxide etching rate of 1.2 nm/min. The vapor HF did not significantly attack the metal 
layer, with the etch rate being only 1nm/hour. 

With this process, we were able to produce the first 200-mm wafers of NEMS VLSI, each 
containing more than 3.5 million NEMS. The arrays described in the main text contained 2 
800 NEMS cantilevers and occupied an area 0.14 mm by 1.0 mm. Other arrays we fabricated 
contained up to 6800 resonant NEMS cantilevers on area of 0.2 mm by 0.6 mm, achieving an 
integration density of approximately 60 000 NEMS/mm², and a functional device yield of 
approximately 95%. 

In future designs and process runs, advanced lithography techniques can be employed to 
decrease the minimum feature size of the arrays even further. Modern 193-nm DUV dry 
lithography can potentially achieve resolution of 70-80 nm on 200 mm wafers with 15 nm 
overlay. Hybrid lithography that combines e-beam and DUV processes can achieve 50-nm 
minimum feature size while keeping the total lithography process reasonably fast for 200-
mm wafers. In this process, the relatively slow e-beam is used to define the smallest 
features, such as 50-nm-wide metallic lines, while the fast DUV lithography defines all 
larger features. Variable Shape Beam e-beam lithography has been demonstrated to achieve 
35-nm half-pitch size and overlay of between 15 and 7 nm depending on the field size. The 
3.5 million NEMS of our current wafers could be written in just 3 hours (simulated writing 
time). With these advanced lithography techniques, one could achieve integration density 
exceeding 100.000 NEMS/mm². 

   
Fig. S1.  Scanning electron micrographs of fully released cantilevers with one or two metal loops. The two-
loop type of cantilever were not used in the array configuration, but its image illustrates the accuracy of 
the lithography process. Note that the accuracy of mask alignment (overlay) was better than 30 nm. 
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Balanced two-port measurement scheme for thermoelastic actuation and 

piezoresistive detection 

The combination of thermoelastic actuation and piezoresistive downmixing described in 
Ref. 1 uses two separate metal loops for actuation and detection—a total of four 
measurement ports. The same combination of thermoelastic actuation and piezoresistive 
downmixing can be used when only one loop is available, as for example in the case of a 
simple two-legged cantilever or an array of such cantilevers. Figure S2 shows the schematic 
of the resulting two-port measurement setup. The drive voltage oscillating at frequency 
ωd/2 creates temperature variations at frequency ωd, which induces cantilever motion.  The 
bias voltage frequency ωb is offset from the drive frequency, ωb = ωd - ∆ω, typically by less 

 

 

Fig. S2. (a) Schematic of two-port measurement of an array using thermoelastic actuation and 
piezoresistive detection. DC is the directional coupler, FD is the frequency doubler, HPF is the high-pass 
filter, LPF is the low-pass filter. (b) Same with balanced detection of two arrays. PS is the 180-degree 
power splitter.  
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than 100 kHz. Both the drive and bias voltages are combined using an RF power combiner 
and sent into the metal loop. On the other side of the loop, a relatively large RF capacitor CRF 

= 6 nF is connected to ground and therefore creates a virtual ground at high frequencies, f  
>> (2π×50 Ω×6 nF)-1 ≈ 500 kHz. This ensures that both the drive and bias voltages 
primarily drop across the metal loop of the resonator rather than elsewhere in the circuit. A 
low-pass filter ensures that only the downmixed signal, and not the RF drive and bias 
voltages are transmitted into the low-noise amplifier. 

One difference between the four-port measurement described in Ref.1 and the two-port 
measurement is the existence of a significant background in the two-port case. This 
background arises because the resistance of the piezoresistor depends not only on strain 
but also on the temperature. Since thermoelastic actuation relies on temperature variations 
to drive the cantilever, we cannot easily avoid this type of background. This effect produces 
a background signal at the downmixed frequency because the variations in resistance due 
to changing temperature and those due to the cantilever motion occur at the same 
frequency, and therefore mix down to the same frequency ∆ω. The magnitude of the 
background signal can be estimated as Vb ~ Vb αR∆T/2, where αR is the temperature 
coefficient of resistance (of the order of 4×10-3 K-1 for most pure metals) and ∆T  is the 
amplitude of temperature variations. In practice, for resonators with quality factors on the 
order of one thousand, this background and the resonant signal were roughly of the same 
order of magnitude. As a result, the two-port measurement is relatively easy to use for 
vacuum measurements, where the signal is usually comparable to the background, and 
more difficult in air, where the quality factor can be of the order of 100 or less and 
resonance signal can be orders of magnitude smaller than the background. 

One way to reduce this type of background would be to fabricate the loop from specialty 
alloys like nichrome, constantan, or manganine, which are designed to have temperature 
coefficients of resistance up to two orders of magnitude smaller than those of pure metals. 
Another way to reduce this background is to use two separate, thermally isolated loops for 
actuation and detection, as illustrated by the cantilever in Fig. S1.  
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A two-port measurement also differs from a four-port measurement in that each 
mechanical resonance produces not one but two peaks during wide frequency sweeps, as 
shown in Fig. S3. The first one appears at the expected position, where the voltages are 
applied at the frequencies ω1 = ωd/2=ωR/2 and ω2 = ωb =ωR – ∆ω, where ωR is the resonance 
frequency. There is, however, a second peak that appears when one voltage is applied at the 
frequency ω1 =ωR +∆ω and another at ω2=2ωR +∆ω. To understand how this peak forms, 
note that when we apply both of these voltages to the same loop, they will mix and produce 

 
Fig. S3.  Wide frequency sweep for a two-port measurement of a single 1.6-μm-long cantilever with the 
fundamental out-of-plane resonance frequency of 62.11 MHz. The sweep exhibits one resonance peak at 
the expected resonance frequency and another at roughly twice the expected frequency. The large 
oscillating background is due to RF cable resonance effects. Lorentzian fits of these two peaks produce 
resonance frequencies of 62.11 MHz and 124.32 MHz, quality factors of +1000 and -1000, and amplitudes 
of 0.75 mV and 1.45 mV, respectively. The frequency offset was 44 kHz for this measurement. 
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temperature variations at the difference frequency ω2 – ω1 = ωR, therefore driving the 
resonance. The resistance variations at frequency ωR can then mix with the applied voltage 
at frequency ω1 =ωR +∆ω to produce a signal at the expected downmixed frequency ∆ω. The 
net result is that another peak appears in the graph at roughly twice the frequency of the 
expected peak. Figure S3 shows a typical two-port frequency sweep showing a peak at the 
expected frequency and an additional peak at roughly twice the expected frequency. 

Surprisingly, the amplitude of the additional peak is twice bigger than that of the expected 
peak. This can be explained by considering the algebraic relationships of the various 
voltage-mixing processes involved. If we apply a sum of two voltages oscillating at 
frequencies ω1 and ω2, the heating is proportional to the square of total voltage: 
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Therefore, the temperature variations at frequency ω2 – ω1 are twice as big as those at 
frequency ω1, and therefore drive the cantilever motion twice harder. The additional mixing 
process that produces the downmixed signal at frequency ∆ω does not change that 
conclusion: the amplitude of “double-frequency” peak is twice that of the “regular” peak.  

In addition to the twofold difference in amplitude, the phase of the resonance response of 
the additional peak is flipped with respect to that of the expected peak for reasons similar 
to those described as in the preceding section. As a result, the regular peaks are fitted with 
positive quality factors, while additional “double-frequency” peaks, with negative. This 
turns out to be helpful when analyzing data from wide measurement sweeps that contain 
peaks from multiple mechanical resonances: if the fitted quality factor Q is positive, then 
there is indeed a mechanical resonance at the expected frequency ωe=ω1=ω2+∆ω; however, 
if the fitted Q is negative, the real mechanical resonance happens at the frequency ωe/2–∆ω. 
In sensing applications, it is often more convenient to work with this “double-frequency” 
resonance peak since its signal-to-noise ratio is usually twice better for the same amount of 
heating. 

Piezoresistive signal from series-parallel arrays 

If we assume that with no excitation all piezoresistors have identical resistances R0, the 
resistance of the entire array without excitation is given by Rarr = R0 × m/l, where m is the 
number of columns in the array, and l is the number of rows. If the resonators are excited 
into motion, the resistance of a piezoresistor in row i and column j will become Rij=R0(1+δij), 
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where δij is the relative change in its resistance due to the motion-related deformation. The 
resistance of the entire array in this case is given by 
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where the Taylor expansion is justified because the relative changes in the resistance of 
piezoresistors are generally small, δij<<1. When using piezoresistive detection, the signal is 
proportional to the applied bias voltage Vb: 
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If all resonators respond in exactly identical ways, δij=δ0, the formula for the array signal 
reduces to that of an individual resonator: 

0

,

1,1 2

1

2
δδ b

ml

ji

ij
b

arr V
lm

V
V == ∑

==

. (S4) 

The maximum drive that can be applied to an individual piezoresistive resonator is limited 
either by the nonlinearity of mechanical response or the maximum tolerable level of 
heating. In our experiments, the maximum tolerable temperature increase due to heating 
was typically on the order of 100 K, corresponding to maximum dissipated power on the 
order of Pmax ~ 100 μW for an individual resonator. If this maximum power is applied to 
each resonator in the array, the total dissipated power will naturally scale as the number of 
array elements, N = lm. In contrast, the bias signal, Vb, and the maximum signal that can be 
obtained from the array, Varr, will scale as the number of columns, m. 

It would seem then that an array consisting of just one row would be the most economical 
way to leverage the signal of individual resonators. However, having an array of just one 
row would mean that the array resistance scales linearly with the number of array 
elements, Rarr=R0 ×N, and may reach excessively large values for arrays of thousands of 
resonators. In experiments, it is often desirable to keep the resistance of the total array 
close to some fixed value, usually 50 Ohm for high-frequency applications. In addition, a 
single-row array is very vulnerable to electrical defects since the breaking of the conducting 
path in just one piezoresistor would render the entire array inoperable. As a result, it is 
preferable to scale the number of rows proportionally to the number of columns, so that the 
arrays remain robust with respect to defective individual resonators and have 
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approximately constant resistance. In this case, the piezoresistive signal scales 
proportionally to m and therefore proportionally to the square root of the total number of 
array elements, √N. At the same time, Johnson noise and thermoelastic noise—the 
fundamental sources of noise in such measurement—do not depend on N at all. The signal-
to-noise ratio then also scales as the square root of the number of elements, √N, and, of the 
total dissipated power, √N Pmax. This situation, where the signal-to-noise ratio increases 
proportionally to the square root of the total dissipated power, is very commonly 
encountered in electrical engineering. 

Note, however, that the scaling of signal as √N is the best-case scenario. In reality, different 
resonators will not respond to the drive in identical ways for a number of reasons. The first 
one to consider is that the phase and amplitude of the drive may not be the same for all 
resonators. For example, in the case of piezoshaker drive, the phases and amplitudes of the 
surface motion will vary due to the interference of ultrasound waves inside the bulk of the 
resonator chip. The length scale of such variations is on the order of the bulk acoustic 
wavelength corresponding to the resonator’s frequency, ~ 350 μm for a 25 MHz resonator 
on silicon substrate, which is smaller than the dimensions of the typical arrays we used in 
our experiments. 

If we assume, for the sake of argument, that the drives for different resonators of the array 
have completely random phases φd but the same amplitude, then the array signal will take 
the form 
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The addition of such signals with random phase is equivalent to a random walk in the 
complex plane, which implies that the expected magnitude of the sum will scale as the 
square root of the total number of terms in the sum: 
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Since the bias signal Vb normally scales as √N, the use of arrays does not offer any 
advantages with respect to the use of an individual device in this case. It is therefore crucial 
to keep the drive phase the same for all the resonators in the array. Maintaining such phase 
coherence of the drive is difficult with piezoshaker drive but is much easier with integrated 
actuators, such as the thermoelastic actuators. 

Even if the drives of all resonators in the array are perfectly in sync, the response of 
individual resonators may not be the same because they all have slightly different 
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mechanical properties, in particular different resonance frequencies. This effect of the 
frequency dispersion is considered in the following section. 
 

Effect of frequency dispersion  

The finite resolution of e-beam and optical lithography introduces slight variations in the 
dimensions of the fabricated resonators. As a result, all resonators in the array will have 
slightly different mechanical properties, and in particular different resonance frequencies. 
A simple way to judge whether this dispersion in resonance frequency is significant is by 
comparing it to the natural width of the resonance under typical operating conditions. For 
example, nanoscale resonators shown in Figure S1 have a typical quality factor on the order 
of 100 in air at atmospheric pressure, corresponding to a resonance width that is 1% of the 
resonance frequency. Therefore, if the dispersion of resonance frequency is much smaller 
than 1%, the individual resonance curves will strongly overlap and the Lorentzian-response 
term of individual resonators may be treated as the same, leading to the summed array 
response being Lorentzian as well. In this case, we obtain the maximum possible amplitude 
of the array response. Conversely, if the dispersion of the frequencies is much larger than 
1%, the sum of the individual Lorentzian response curves will be much broader than an 
individual resonance, and the peak array signal will be much reduced with respect to the 
maximum possible signal. 

In order to quantify this qualitative argument, we need to consider the problem of adding 
up many Lorentzian resonance curves with randomly distributed resonance frequencies. 
The normal or Gaussian probability distribution is a common choice in such simulations; 
however, we have found that in reality the distribution of resonance frequencies has long 
and “fat” tails, i.e., the probability of finding resonance frequencies far off the mean is much 
larger than would be expected in a Gaussian distribution. The large number of outliers is 
illustrated by the data in Figs. 3(b) and 4(a).  

To model this large number of outliers, it is more appropriate and convenient to use the 
Cauchy distribution, which has the probability density function similar to the Lorentzian: 
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where ω0 is the center frequency of the distribution and Qdistr characterizes the width of the 
distribution, similarly to the way that a quality factor characterizes the width of a 
Lorentzian curve. The Cauchy distribution more accurately describes the long tails of the 
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frequency distribution that we observe in practice and has the added advantage that the 
expected form of the array response can be calculated analytically, as shown below. 

The response of a forced, damped harmonic oscillator is given by 

Qi

Q
As

DRDR

R
D

/

/
)(

22

2

ωωωω
ω

ω
+−

= , (S8) 

where A is the amplitude of the resonance signal, ωR is the resonance frequency, Q is its 
quality factor, and ωD is the frequency of the drive. If the quality factor of an individual 
resonator is large, Q >> 1, the response near the resonance can be approximated by the 
complex Lorentzian 
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The expected signal from one array cantilever with a randomly distributed resonance 
frequency is then a convolution of the complex Lorentzian response with the Cauchy 
distribution: 
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which is simply the complex Lorentzian response with a new effective quality factor 
Qeff = 1/(Q-1+Qdistr-1) and a new effective amplitude Aeff=AQeff/Q. The expected signal of the 
entire array will have the same form, since it is essentially the sum of the expected signals 
of individual cantilevers and we assume all cantilevers in the array to be described by the 
same Cauchy probability distribution. In addition, for a large array, N >> 1, the typical 
response generally will not deviate far from the expected response as the random 
variations introduced by individual resonances will largely average out. Therefore, the 
frequency dispersion effectively has the same result as an additional source of damping, 
corresponding to a quality factor Qdistr, which reduces the effective quality factor of the 
array from Q to Qeff  = 1/(Q-1+Qdistr-1). 

 

To illustrate this effect of the resonance frequency dispersion on the shape of the array 
response, we have performed numerical simulations for an array consisting of 2800 
elements (Fig. S3(a)) In the simulations, all resonators assumed to have a quality factor of 
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100, corresponding to experimental value in air, and the width of the Cauchy distribution 
was varied, starting from a distribution width much smaller than the natural width of the 
resonance, Qdistr >> Q, and ending with a distribution width much larger than the natural 
width of the resonance, Qdistr << Q. As expected, increasing the width of the frequency 
distribution broadens the resonance peak of the entire array and reduces its amplitude. 

In Fig. S3(a), the simulated response curves do not deviate significantly from the perfect 
Lorentzian curves due to the large number of the elements in the array and their relatively 
low quality factors. However, the fact that the overall response curves of the array consist of 
many narrow lines corresponding to individual resonators becomes evident if the quality 
factors of individual resonances are high enough, as shown in Fig. S3(b). These curves 
simulate the response of actual arrays used in experiments in air and vacuum. The 

 

Fig. S4.  (a) X and Y quadratures of the simulated response of an array of 2800 cantilevers with Q = 100 
and Qdistr of 400, 100, and 25. The effective quality factors Qeff in these cases are (400-1+100-1)-1 ≈ 80, (100-

1+100-1)-1 ≈ 50, and (25-1+100-1)-1 ≈ 20, respectively. (b) Same for Qdistr = 100 and Q of 100 and 1000, 
which approximately corresponds to the frequency dispersion and quality factors in air and vaccum of 
actual arrays used in experiments. 
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frequency distribution width of the typical arrays we have worked with were on the order 
of 1%, corresponding to Qdistr = 100, and the quality factors of individual resonances were 
on the order of 100 and 1000 in air and vacuum, respectively. As a result, the experimental 
curves in vacuum had more “fine structure” than those in air due to the response of 
individual cantilevers. 

The differences between different resonators in the array are, of course, not limited to the 
variations in the drive phase and resonance frequencies. The quality factors and the 
amplitudes of response of individual resonators will also vary. However, we have found in 
our experiments that these variations are relatively insignificant and have a negligible effect 
on the overall response of the arrays. 

 

                                                        

1 I. Bargatin, I. Kozinsky, M.L. Roukes, Efficient electrothermal actuation of multiple modes of high-frequency 
nanoelectromechanical resonators, Appl. Phys. Lett. 90, 093116 (2007). 


