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I. Effect of Surface Stress on Doubly-Clamped Beams 

A. Axial force model (Stress effect in Table I) 

In this section, we derive the required formulas for the effect of surface stress on the resonant 

frequency of doubly-clamped beams due to the axial tension built up along the beam (stress effect in 

Table I). In the main manuscript we discussed that a net axial force is induced in doubly-clamped 

beams, along their major axis. This net axial force is given by the integral of the resulting axial stress 

over the beam cross-section. For the resonators used here, this coincides with the integral of the axial 

stress in the active piezoelectric layer only; other parts of the beam do not contribute to the net axial 

force because the beam-ends are restrained from moving. The net axial force determines the resulting 

effect on resonance frequency and/or stiffness of the device. 

 

Figure S1 | Graphical representation of a doubly-clamped (a) and a 

cantilever (b) beam with the dimensions used in the paper, as well as the axis 

definition. In (a) a compressive stress (positive stress by convention) is 

shown, whereas in (b) a tensile (negative by convention) stress is shown. 
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The effect of surface stress on the resonance frequency of a doubly-clamped beam is calculated 

to leading order for small surface stress loads, and thus gives a linear relationship between the resonant 

frequency shift and the applied surface stress change. It is assumed that the beam structure possesses a 

rectangular cross-section whose width b greatly exceeds its thickness h, i.e., the beam is formally a thin 

plateS1. The length of the structure is L (see Fig. S1). 

We use the general theoretical formalism presented elsewhereS2 to calculate the effect of 

surface stress, and thus decompose the problem into two subproblems: 

Subproblem (1): Deformation of an unrestrained plate under application of a net surface stress load. 

Subproblem (2): Beam structure with no surface stress load and a specified in-plane displacement to 

satisfy the required clamped boundary conditions at the ends. 

Superposition of these two subproblems gives the required in-plane deformation of the original 

problem, with exact satisfaction of free edge and clamped boundary conditions; see ref. S2 for details. 

Application of a net surface stress change to the surface of the structure, with the clamped 

boundary conditions removed, results in an isotropic strain whose displacement field is: 

 ,      (S1) 

where u and v are displacements in the x and y directions, respectively;  are the Cartesian 

coordinates in the plane (see Fig. S1); ν and E are the Poisson ratio and Young’s modulus of beams 

material respectively; h is the device thickness; and σs
T is the total applied surface stressS2. This is the 

required solution to Subproblem (1). 

To account for the clamped displacement conditions at the end of the structure, in accord with 

Subproblem (2), a displacement load in the x-direction must be applied to its ends; displacements in the 

y-direction are not important since the beam length greatly exceeds its width, in accord with Saint-

Venant's principleS3. From Eq. (S1), this axial displacement is: 

 ,      (S2) 

where L is the beam length. Such an axial displacement induces an axial tensile load: 

 ,      (S3) 
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where b is the beam width. The axial load in Eq. (S3) will lead to a change in stiffness and hence 

resonant frequency. Since the beam length greatly exceeds width and thickness, this effect is calculated 

from Euler-Bernoulli beam theory. The governing equation for the deflection function w, for a beam of 

linear mass density µ and areal moment of inertia I, is: 

 ,    (S4) 

which is solved with the usual clamped boundary conditions at the beam ends, .  

We assume an explicit time dependence of , where ω is the angular frequency and t is 

time, i.e., . Multiplying both sides of Eq. (S4) by the deflection function w, 

scaling x by the beam length L, and integrating over the beam length yields the following exact result 

for square of the radial resonant frequency: 

 ,   (S5) 

where 
 
is the scaled axial distance. 

To calculate the leading order effect of surface stress change on the frequency shift, we use the 

deflection function for a doubly-clamped beam in the absence of surface stress. Solving Eq. (S4) under 

this condition then gives: 

 ,  (S6) 

where  is the n-th positive root of: 

,     (S7) 

with  corresponding to the fundamental mode. 

Substituting Eq. (S6) with  into Eq. (S5), and using Eq. (S3), then yields the required 

result: 

,     (S8) 
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where the original radial resonance frequency  , the beam mass density 

is ρ, and the radial frequency shift is defined . We emphasize that Eq. (S8) is valid in the 

asymptotic limit of small stress loads. An alternate derivation of this formula is given in Ref. S4. 

B. Change in dimensions (Geometric Effect in Table I) 

Due to the boundary conditions in a doubly-clamped beam, after an isotropic in-plane stress is 

applied to the beam the strain map that develops is: 

    
(S9) 

Assuming that the Young’s modulus of the material remains unchanged during the application 

of stress, the relative change in the resonant frequency would be: 

   (S10) 

That, using (S9) with (S10), yields: 

      (S11) 

which is the expression found in Table I in the main manuscript. In the case of doubly-clamped beams 

and the typical geometries that are used , the stress effect described previously is much larger 

than this geometric effect. 
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II. (Unphysical) Axial Force Model for Cantilever Beams 

It has been widely assumed that application of surface stress to a cantilever beam induces an 

axial force along the beam length. This so-called “axial force model” has been shown to be unphysical 

and in violation of Newton’s 3rd lawS2,S5,S6. For completeness, however, we reproduce the resulting 

formula derived from this modelS7. This allows comparison and assessment with measurements 

performed in this study. 

In the limit of small surface stress loads, the axial force model has been reported under various 

formsS7-12. Since the underlying model is unphysical, we refrain from any discussion on the merits of 

each form and simply report the most common formula that has been claimed to yield good agreement 

with measurementsS7: 

.     (S12) 

Comparing this result with the (physically correct) model for doubly-clamped beams in Eq. 

(S8), we observe that the axial force model predicts a larger shift in frequency in cantilever beams than 

in doubly-clamped beams, by a factor of: 

.     (S13) 

Since , the axial force model predicts that cantilever beams are much more sensitive to 

surface stress changes than doubly-clamped beams. This is not observed in the controlled 

measurements of doubly-clamped and cantilever beams reported in this study. 
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III. Piezoelectric loads in doubly-clamped beams 

The piezoelectric effect couples the mechanical and electrical degrees of freedom of a material 

by the following relation 

      (S14) 

where (ε) and (σ) are the mechanical strain and stress vectors, respectively; [C] is the compliance 

matrix of the material, (E) is the electric field vector and [d] is the piezoelectric matrix, which is 

directly responsible for the mechanical/electrical coupling. For the piezoelectric material considered in 

this study, the piezoelectric matrix is of the form (with axis 1, 2 and 3 pointing along the beam, 

transversal in-plane and out-of-plane respectively): 

.      (S15) 

The application of an external voltage between two electrodes contacting the piezoelectric 

material (as in our experimental case) leads to the generation of an electric field and, consequently, 

deformation of the material. Following a similar approach to that taken in Section I of the SI, we first 

calculate the deformation of the unrestrained piezoelectric material. This allows the material to expand 

or contract freely and therefore the in-plane strains εxx along the beam and εyy perpendicular to the beam 

and out-of-plane strain εzz are given by: 

,     (S16) 

where V is the applied voltage and  is the thickness of the piezoelectric layer.  

However, the composite beam structure used in the present devices contains other materials that 

are not piezoelectric. Those materials impose some restrictions on the total deformation, which will be 

a combination of net elongation and bending. As a first approximation, bending does not contribute to 

the stiffness of the beamS2 and therefore we can limit our analysis to the net (average) strain. This net 

strain is given by Eq. (S17) when the Poisson ratios of the different materials are identical (which is an 

excellent approximation in the present case): 
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    (S17) 

where  is the Young’s modulus of the piezoelectric material, htot is the total thickness of the beam, 

and the summation in the denominator extends to all four layers of the composite structure, with  

and  being the Young’s modulus and thickness of every layer, respectively. The brackets in equation 

(S17), , mean average over the cross section of the beam (y-z plane).  

Following the approach of Section I of the SI, we initially consider the case of a doubly-

clamped beam. The solution above corresponds to Subproblem (2) in Section I. Subproblem (2) then 

requires a displacement load in the x-direction to match the required clamped boundary conditions at 

the beam ends, as discussed above. This axial displacement induces the following axial load: 

 .       (S18) 

Equation (S18) can now be directly compared to Eq. (S3) and the derivation performed in Section 

I is valid here. We can thus write an expression equivalent to (S8), in this case for a piezoelectric beam:  

,      (S19) 

where <EI> is the effective flexural rigidity of the beam. If the Young’s moduli of the different 

materials in the composite structure are approximately the same, Eq. (S19) immediately leads to: 

,     (S20) 

which is only dependent on total thickness htot. Comparing Equations (S8) and (S20), it is evident that 

the effects of an applied voltage are equivalent to the effects of an applied surface stress, as required. 

This leads to the following relation connecting an equivalent surface stress to a given applied voltage: 

 .      (S21) 

Note that in the calculation of the change in frequency for a doubly-clamped beam, we have 

neglected any differential change in dimensions, since this is much smaller than the contribution given 

by Eq. (S20) (we assume that any beam holds the condition L>htot).  
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IV. Cantilever beams 

A. Isotropic material – surface stress load 
We begin by considering a cantilever plate composed of an isotropic material under a surface 

stress load – this effect is due to surface stress change; see ref. S2. 

The in-plane stress effect has been analyzed previously and yieldsS2: 

,      (S22) 

where numerical coefficient  is estimated via FEM and accounts for 3D effects of the 

stress distribution close to the clamp. A detail exposition of the derivation of this formula and its 

physical features is given in Ref. S4. 

The geometric effect is given by the differential change in dimensions of the cantilever beam, 

due to the surface stress load. This tunes the stiffness and the resonant frequency of the cantilever, and 

yields (considering ): 

,    (S23) 

In the limit as  (commensurate with the assumptions of thin plate theoryS2), the in-

plane stress contribution in Eq. (S22) dominates the geometric effect in Eq. (S23), for large and fixed 

aspect ratio . The in-plane stress effect remains prevalent for thin beams under the condition: 

,     (S24) 

whereas for thicker beams, the geometric effect will dominate. 

These results are gathered in Table I of the main manuscript. 
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B. Piezoelectric material – voltage load 

For the piezoelectric beams used in this study, the geometric effect can also be calculated:  

.  (S27) 

The changes in the Young’s modulus and Poisson ratio of the materials are neglected. For the 

piezoelectric material used here, , and hence Eq. (S27) becomes: 

.     (S28) 

Calculation of the stress effect in the devices considered is complicated by the multilayer 

structure of the piezoelectric cantilevers, and their non-isotropic material properties. Three-dimensional 

FEM analysis is thus used to obtain the combined contributions of stress and geometric effects, 

complementing Eq. (S28). This total effect is plotted in Fig. 3. We find that the geometric effect 

dominates the results.  
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V. Measurement of NEMS Device Response 

We employ an optical interferometric detection scheme to sense the mechanical motion of our 

NEMS devicesS13. This detection mechanism is used due to ease of implementation, high mechanical 

responsivity to out-of-plane beam displacements and negligible RF background noise. 

 

 

Figure S2 | Schematic of the optical interferometric detection 

setup used for sensing the motion of NEMS devices 

 

A schematic of the experimental setup is shown in Fig. S2. The devices are mounted in a 

custom-built room temperature vacuum chamber fitted with a quartz optical window for interrogation. 

An optical cavity is created between a two-mirror system formed by the bottom of the substrate and the 

top surface of the NEMS device. The light source consists of a regular helium neon laser (λ = 632 nm) 

followed by a beam expander and an attenuator. After the original laser beam passes the beam splitter 

oriented at 45o, one component is focused onto the NEMS device with a lens of 0.15 numerical 

aperture, resulting in a spot size ~10–20 μm. Interference between laser beams reflected from the top 

surface of the mechanical resonator and bottom substrate is detected using a high-bandwidth low-noise 

photodetector. As a result, the resonator motion modulates the light intensity in proportion to the 

magnitude of the mechanical displacement.  
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An AC voltage between top and bottom electrodes of the NEMS device actuates the out-of-

plane motion, while a DC bias produces the required external stress studied in this work. Both voltages 

are combined using a bias-tee. A vector network analyzer is used to measure the resonance spectral 

response of the resulting signal. To perform the frequency shift experiments, the network analyzer 

operates in a continuous wave (CW) regime and is controlled by an external computer that is used to 

provide phase locked loop (PLL) operation.  

A slight asymmetry between tunability slopes is observed in doubly clamped beams. We 

attribute this to an electrostatic effect from the substrate that affects the resonant frequency as 𝑉2.  

When fitting the experimental data to a second-degree polynomial, the fit is more accurate but the 

linear slope, nevertheless, remains the same (relative change smaller than 1%). In subsequent 

experiments, we used a wafer with a thick sacrificial silicon oxide layer underneath the seed aluminum 

nitride layer and this reduced by two orders of magnitude the coefficient of second order in the 

polynomial. In this case, again, the linear slope remains the same. We therefore believe that the 

conclusions drawn in the current paper are not affected by the observed small symmetry-breaking. 

Fig. 3 in the main manuscript also shows some apparent asymmetry and, in addition, an 

apparent discrepancy of the scaling with 1/𝐿2. In order to clarify this issue, we replot Fig. 3 from the 

main manuscript as Fig. S3, in this case with error bars. The error bars for the experimental data are 

calculated based on the measured Allan Deviation of 5·10-6, representing the 95% confidence bounds. 

The error bars for the FEM data correspond to the typical expected accuracy of FEM simulations, 

accounting for geometrical and material uncertainties and convergence of the frequency shift; see 

Section VI-A. The discrepancy between theoretical prediction and measurement slopes is on the order 

of ~5-15%. This is a reasonable agreement considering the shown experimental error of ~10%, 

especially visible on scaled plot shown in Fig S3(a). Therefore, the slight asymmetry and discrepancy 

with the scaling appear both to be negligible, when careful analysis of measurement errors is taken into 

account. 
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Figure S3 | (a) Relative Δ𝑓/𝑓𝑅 and (b) absolute Δ𝑓 frequency shift for three cantilevers (Fig. 3 in the 

main manuscript) with error bars. The experimental uncertainties show 95% confidence bounds and 

they are calculated based on the observed Allan Deviation of 5·10-6 – a measure of cantilevers’ 

frequency fluctuations. The error bars for FEM data are based on estimated geometrical and material 

uncertainties and convergence of the frequency shift (see Section VI-A). 
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VI. Finite Element Simulations 

Extensive Finite Element Method (FEM) simulations have been performed to (i) compare with 

experimental results on piezoelectric beams, and (ii) assess theoretical predictions from the presented 

models for uniform beams. In all the cases, the objective of the simulations was to compute the 

frequency shift caused by an applied load, which could be either stress (in a uniform beam) or 

transverse applied electric field in the piezoelectric material. 

A commercial software was used to perform these simulations. The methodology used consists 

of performing first a static analysis of the system with the applied load, allowing the system to respond 

to this load. Subsequently, a modal analysis is performed using the resulting stresses/strains from the 

static analysis. This modal analysis can account individually for the effect of structural stress on the 

resulting stiffness, and/or for the effect of the resulting strain on the geometric change in dimensions. 

 

A. Mesh convergence 
The utilized mesh is refined until 99% convergence in the interesting magnitudes is achieved. 

Convergence is defined, for the static analysis, by monitoring the maximum strain, stress and 

deformation, observing that all of them converge at about the same rate. In the case of modal analysis, 

convergence is defined by monitoring the frequency of the first out of plane flexural vibrational mode. 

The mesh refinement converges at the same size for both modal and static analysis.  

The convergence of the simulated frequency shift was also studied. In the case of doubly-

clamped beams, the frequency shift due to stress can be observed to converge at the same rate as the 

frequency. However, when considering the stress effect in cantilever beams or the geometric effect for 

either of both types of beams, the frequency shift cannot be converged better than 95%. This is most 

likely due to the property that the frequency shift is much smaller in these cases and the number is so 

small that, as soon as the mesh refines, it also introduces numerical uncertainty that is of the order of 

5% of the frequency shift. We therefore make all the simulations considering a 99% convergence in 

frequency shift for the stress effect in doubly-clamped beams and a 95% convergence in frequency 

shift for remaining cases. 
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B. Piezoelectric devices 

Cantilever and doubly-clamped beams are simulated in accord with the geometry and clamping 

conditions of the fabricated devices. This includes a small ledge in the anchoring region, which is 

found to be necessary for better comparison between experiments and simulations (bringing them about 

2-4% closer). The used material properties are: EAlN = 345 GPa, νAlN = 0.3, ρAlN = 3230 kg/m3, d31,AlN = 

−2.5 pm/V, EMo = 329 GPa, νMo = 0.31, ρMo = 10.300 kg/m3. By changing the applied external voltage, 

simulations of the experimental measurements are produced, as shown in Fig. 2 and Fig. 3 of the main 

article. No change in Young’s modulus and Poisson’s ratio was considered during these simulations. 

As introduced before, we perform independent simulations to account for each of both effects 

(stress and geometrical changes). In the latter case, we find a remarkable quantitative agreement for the 

frequency shift when comparing FEM results with the analytical predictions of Eq. (S28) (5% 

difference). The simulated/theoretically predicted frequency shift accounts for as much as 75% of the 

experimentally observed frequency shift.  

Stress induced frequency shifts in piezoelectric cantilevers are larger than expected for uniform 

beamsS2. Equation (S22) (with ) predicts around 2% of the observed frequency shift, 

while FEM simulations represent around 20% of the experimentally observed frequency shift (which 

added to the geometrical effect described before corresponds to 95% of it). We attribute this divergence 

between FEM (and experimental results) and theory to the actual non-uniform geometry of the multi-

layer resonators used experimentally. A possibility recently brought up in the literatureS14 could be the 

fact that our structure is not completely symmetric, but has some asymmetry due to the bottom AlN 

layer. FEM simulations disprove this explanation – when we remove the asymmetry, the results 

(relative frequency shifts) are not affected. 

The simulations diverge from the experimental results by around 5%. In the case of the 

cantilever beams we attribute this to the limit in the accuracy of our technique. In the case of the 

doubly-clamped beams, the divergence is mostly caused by a deviation from linear behavior of the 

experimental results. The origin of this effect has not yet been elucidated but a plausible explanation 

can lie in variations of the Young’s modulus due to the axial stress generated along the beam. 

 

 

( ) 0.042φ ν ν≈ −
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C. Uniform beam with surface stress load 
To assess the validity of the theoretical model developed, simulations of cantilever and doubly-

clamped beams composed of a single material were also performed. In this case, ideal anchoring was 

utilized, i.e. no ledge was included in the model. We use the following typical material properties: E = 

200 GPa, ρ = 2000 kg/m3. The Poisson’s ratio of the material, ν, assumed the values ν = 0, 0.25, 0.49. 

Following the procedure described above, several simulations were performed by varying the applied 

load (in this case surface stress). The normalized frequency shift, Ω, was then determined: 

 .     (S29) 

In Fig. S4, the normalized frequency shifts are plotted for different Poisson’s ratios as a 

function of the ratio b/h, for a given L/b = 10. Contributions due to stress in the cantilever material and 

change in cantilever dimensions are shown separately in Fig. S4. They correspond precisely to the 

predictions of Eq. (S25) and Eq. (S26). Different crossover points of the contributions are found for 

different Poisson’s ratios, also as predicted by Eq. (S24). 

 

Figure S4 | FEM simulation results of relative contribution of stress (filled markers, solid line) and 

geometry (hollow markers, dashed line) on Ω. Results given as a function of ratio b/h for ν = 0, 0.25 and 

0.49. The crossover regions are highlighted by large rectangles and are located at b/h ~ 35-40.  
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