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SIFA.  Amplitude equation

1. Externally driven resonator
The equation of motion of an externally driveonlinearresonator is given by:
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wherewis thesignal amplitude ofhe resonator is its effective massQ a1 s its effective
spring constant and resonance frequaesypectively| is the cubic spring constant, or Duffing

parameter3 is the linear damping rate aifds the external driving force.

We are interested in solutions® that are slow modulations of the linear resonance

oscillations and so we introdu@edimensionless slow time scal¥ -] 0 and displacement
amplituded: ® -wo "YQ 8 E; where the small expansion parameteand the

displacement scalé are chosen for convenience as detailed betistands for complex
conjugate and theellipses ( ) denotesmall corrections from higher harmonic that we will not
need. Following the procedure outlinetsewhery secular perturbation theory leads to the

eqguation of motion for the slow modulations
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For the expansion procedure to be consistént must be) p quantities. Thus we
choose the scale factors 3j @] 0 andw 4] j| 0 so that in the absence of

fluctuations the values ¢fh are unity. In the presence of parameter fluctuatioisand, this

leads tof p hH Y and| p f Y, with f M) representingthe slow time noise
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sourcescharacterizinghe fluctuationsAs the amplitude is locked to the driving force, we can

alsoexpressita® X2 ‘Q and therefore obtain:
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2. Heavily saturated oscillator

We reproduce all the previous steps to aravéhe amplitude equation describing the

slow-time motion of a heavily saturated oscillator, which is:

iQ h (SI5)
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with i being the saturation level of the feedback function @ride phase delay present in the

feedback loopWe substitutéd Q2  into Eq.(SI5), which yields:
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It is clear that EqqSI4) and(SI6) are equivalenthowever,in the case of an externally
driven resonator, theontrolparameters determining the motion #re driving frequencynand
amplitude’Q while in the case of a la@ily saturated oscillator, thoparametes are the feedback

phases and amplitudé , seeFigureS1.
It is also possible to separate EgI6) into real and imaginary pato obtain:
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wherenmis the oscillation frequency.fter the steady state is reached, we oltain
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which is Eg. (1) in the main manuscript, describing the limit cycle of a heauilyrated

oscillator.
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Figure S1 Resonant response curves showing the differences between an externally driven resonator
(a) where the dynamics are determined by the frequency (M) of the external force; and a heavily
saturated oscillator (b), where the operational point is determined by the feedback phase. It is
therefore possible to see that in the first case (a) there are regions with several solutions and one of
them is unstable (dashed lines), whereas in the second case both amplitude and frequency are

single-valued functions of the phase, so no instability is found.
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SI-B. Location of optimized operational points

Using theexpressionsn Table 1 of the main manuscrjpte can ealy find the ses of
operational pointshat minimize the contribution to phase noise coming from noise in parameter

3 and coming from thermomechanical noise through amplipidese conversion. We present
those sets in the followingigure 2.

| B B B BN R SR S S A A A B L
4 |=====*Duffing critical - Family 1 o’
= = = Duffing critical - Family 2
[eecccce Amplitude-phase detachment

A/180°

Figure S2 Operational points of a heavily saturated oscillator, highlighting the sets of points where
different contributions to the phase noise are canceled, in particular the contribution due to
fluctuations in 3- and the contribution due to amplitude-phase converted thermomechanical noise.

Notice how the second family of DCPs approaches the ADP set for high levels of drive.
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SI-C. Experimental determination of noise intensities

1. Thermomechanical noise

Thermomechanical noise enters the dynamical equations as a randein foec, so Eq.
(S11) canbe writtenincludingthis noisetermas:
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where the magnitude of the noise is imposed thg fluctuationdissipation theorem:
, o ¥ ¢3Qd10 O, where Q is the Boltzmann consth and D is the
temperaturelf we apply therescalingsteps described before and elsewhese end up with the

following amplitude equation with noise:
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where™Q0 are the deterministic terntescribed previouslgndfy  “Y is the dimensionless

equivalentof 04 f Y is a complexquantity(f h Q) that defines the intensity of

the noise for our model as:
Gf] “Yh Y a Cf] YR Ya 07 Y Y (s111)

with 'O . In order to estimaté® we measure the frequency andquality factord

through a linear resonant sweep. We estimate the miasthrough carefulinspectionin a
scanning electron microscope (SEM)o det er mi ne t h,eas Wwe# asnhirosighd i me n
subsequentinite element modelingHEM) simulations. Finally, we estimate following the

method detailed elsewhéréy analyzingheresonant responses for increasing drive levels.

Assuming that the beam remains at room temperaagsyggested byEM results for
the temperature distributiofor the voltages used ithese experiments), the intensity of

thermomechanical noise is:

O pd pm (S112)
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2. Noise in

To estimate the magnitude thfe noise in the feedback pha®ewe first characterize the
phase noise introduced by different components in the feedback loop. We do that by comparing
the phase noise of a monotonic signal from an AgiNst80to that same signal after passing
the component under testWe find that the contribution fromther components amegligible

compared tahat of the resonator transduction and the first low noise amplifier in the gain chain.
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Figure S3 Thermomechanical and system (or transduction) noise in our resonator after first amplifier
stage in the gain chain.

In a linear gain chain, theoise in3 is evaluated as the ratimetweenthe nonthermal
noisein the signal and the squared oscillation amplitu@@® "Yj & . By measuring the noise
after the first amplifier stageve can calibrate the transduction noise using the thermomechanical
noise (sed-igure B), giving™© 1O P¥®,withpP T&. However, as we have described, our
gain chain is not linear but operates in the heavily saturated reBimeonsiderig aO A TowE
amplifier gain curve in the highly saturated limit, we oltain

vor 0 13
ow i i
but the actual proportionality coefficient in H&I13) might be slightly different depending on
the actual amplifier gain curve.
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3. Noisein v
Noise in the magnitude of the output signal of the linear amplifier stages is suppressed by
the subsequent limiter and variable attenuator. However these elements may also add noise,
resulting in noise in the saturation parameterWe estimat¢ ths noise in the saturation
parameteri by sending a monotonic signal from an Agildd6180 through the limiter and
variable attenuator. We compare the phase noise and the power spectrum of the sigreatdbefore
after the limiting stage. While phase noise affects both measurements, nioiseoinly visible
in the power spectrumWe observe, however, the sammesult in both measurements
approximatelyc® p m @ F( Uwvhenthe saturation level is @ U 6, corresponding td
08 x.oThis implies that the noise irthe saturation levekhould be smaller thar
p T F( UTranslating to the scaled variables we can now write:
1 i
R X Q@ pT (S114)
4. Adjustment of the noise intensities
Using theexpressionsTable 1 in the main manuscriptand the intensities calculated
above we can predict the total phase noise by adjusting the rest of the intensities.

We first consider onlythe contributios from thermomechanicaloiseand noise irg- for
which we have independent estimat®¢e find thateither oneof these two noise sources
dominate the phase noise across the whole explored parameter, sgaept for a small region

about the optimal operating poifito optimize the fitting we séD p&® p m and 0 w—.

For the latter, lie slight differencg9 versus 12)with the value estimated inEq. (SI13) is
motivatedto improve the fitting for small values cdtsiration.We thenfocus on the region close

to ADP and DCRF2 where these two noise sources are insufficient to account for the measured
oscillator noisdo obtain avalue of thenoise inthefrequencyparameter’'O 1 p 1T .

Finally, we studythe region around w 1, and we see thab obtain abetter fitwith
the experimental data, noise in the saturation parameter needs to be much smaller than the upper
bound set by E(SI14). However the consequencetistwe need some other source ofsao
that grows much faster with the saturation leétaah the noise ithe saturation. Lookingt Table
1, we see that both noise irand’ grow faster than noise in andso we set both fluctuations
bearoundD p 1 . Choosingfluctuations irf to be slightly largeprovides a much better match
to the experiments. The final values for théeimsities wergODuv p Th'O p m O ¢

p .
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SI-D. Effect of fluctuations in frequency

As discussed in the main manuscript, we observe an improvement in the phase noise at
larger driving power (beyond the nonlinear threshold). This improvement, howebeuyrnded
by fluctuations in the resonance frequency of the dewsedf. If these dewde fluctuations were
to be cancelled areduced the improvement would be muahore significant In the following
figure we present the comparison of tpesdictions of the model with and without the

contribution due to fluctuations in thesonancérequency.
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Figure S4 (a-e) Comparison of the model prediction for the total phase noise accounting for (orange)
and not accounting for (purple) frequency fluctuations of the mechanical device. (f) Shows the
minimum phase noise for each saturation value. It can be clearly seen how the frequency
fluctuations soon become the limiting factor. An improvement of 10 dBc/Hz should be possible if the

fluctuations in frequency were minimized.
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