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Derivation of the analytical form of the nonlinear coupling coefficients 

The flexural motion of a doubly clamped beam generates a uniform strain along the beam 

axis, because the ends are clamped. This strain gives rise to a uniform tensile stress via Hooke’s law, 

which increases the beam stiffness. This can affect both the frequency of the mode at which the 

beam is excited (self-tuning) or those of other modes (cross-tuning). Here we derive the relevant 

equations that describe these processes. 

We start by solving for the flexural modes of a doubly clamped beam. The deflection functions 

of these modes are given by1 

Φn(ξ) = Qn (cosh 𝜅𝑛𝜉 − cos 𝜅𝑛𝜉 +
cosh𝜅𝑛 − cos 𝜅𝑛
sinh𝜅𝑛 − sin𝜅𝑛

[sin 𝜅𝑛𝜉 − sinh𝜅𝑛𝜉]), S.1 

where 𝜉 is scaled distance along the beam normalized by the beam length, 𝑄𝑛 is the nth mode’s 

amplitude normalization constant (𝑄𝑛 ≈ 1), and 𝜅𝑛 = √
𝜌𝐴

𝑌𝐼
𝜔𝑛

24
. The Euler-Bernoulli equation in the 

presence of an axial stress is2 
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𝜇𝑙4
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S.2 

where 𝑢2 is the beam instantaneous displacement normal to the beam axis, µ is the linear mass 

density of the beam, Y is the material Young’s modulus, I is the beam’s areal moment, l the length of 

the beam, A the cross-sectional area, and T the intrinsic axial tension (stress) of the material. The 

middle expression is the contribution due to uniform axial stress in the beam. Within this 

expression, the first term gives the contribution arising from intrinsic tension, and the second 

accounts for extension along the beam length due to finite oscillation amplitude. 

We then decompose the beam motion into its normal modes  

𝑢2(𝜉, 𝑡) =∑𝒜𝑛Φn(ξ)ζn(t).

𝑛

 S.3 

Substituting equation S.3 into equation S.2, gives 
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For a beam excited at two of its modes k and j, we obtain 

ζk̈ +ωk,0
2 ζk + ηkωk,0

2 ζk [𝑋𝑘𝑘
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𝑌
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where 
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𝐴

𝐼
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The summation convention is not used. The resonant frequency of each mode is modified by the 

intrinsic tension, T, according to 
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ωk,t
2 = ωk,0

2 (1 + ηk𝑋𝑘𝑘
𝑇𝑙2

𝐸
),     τk =

ηk

1 + ηk𝑋𝑘𝑘
𝑇𝑙2 

𝐸

. S.6 

Assuming the beam motion is weakly perturbed by the nonlinearity in Eq. (S.2), we then use the 

harmonic approximation. Substituting  ζ(t) ≅ cos𝜔𝑘,𝑡𝑡 into Eq. (S.5) gives the required resonant 

frequency of mode k in the presence of finite oscillation amplitude of modes k and  j, 

 

𝜔𝑘,𝑚𝑜𝑑
2 = 𝜔𝑘,𝑡

2 (1 + 2𝜆𝑘𝑘𝒜𝑘
2 + 2𝜆𝑗𝑘𝒜𝑗

2). S.7 

Thus, from equation S.5 the change in resonant frequency of mode k is 

𝛥𝜔𝑘
𝜔𝑘

= 𝜆𝑗𝑘𝒜𝑚𝑎𝑥,𝑗
2 , S.8 

assuming that only mode j is driven to high amplitudes, i.e., the tension developed by the oscillation 

of mode k is insignificant. The coupling coefficients in Eq. (S.9) are 

𝜆𝑗𝑘 = (2 − 𝛿𝑗𝑘)
𝜏𝑘
8
(
𝑋𝑘𝑘𝑋𝑗𝑗

2
+ 𝑋𝑗𝑘

2 ). S.9 

These coefficients 𝜆𝑗𝑘 form the nonlinear stiffness tensor that relates the change in resonant 

frequency to the amplitude of resonant motion of modes k and j. The diagonal components are the 

well-known “Duffing”3 terms of a single mode oscillation. The off-diagonal components describe the 

nonlinear coupling between two different modes.  
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