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I. Theoretical derivation of synchronization equations for two 

anharmonic oscillators 
 

We start with the slow time equation[1] for two oscillators with two feedback[2, 3] terms: one 

which is common to both oscillators (fc), and one that affects the corresponding oscillator only (fi, 

i=1,2). These are  
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where 𝛿1,2 = 𝑄(
𝜔1,2
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2 − 1) defines the offset of the natural resonance frequency of each NEMS 

device 𝜔1,2 to a nearby frequency, 𝜔0, �̃� = �̃�𝑒𝑖𝜑 is the complex slow time oscillator displacement, 

and the nonlinear coefficient 𝜆 is the relationship of the device displacement to the relative change 

in the NEMS resonance frequency (there is a factor of 3/8 that has been folded into this constant 

with respect to references 1 and 2). The terms 𝑓1,2  and 𝑓𝑐  are the “oscillator feedback” and 

“coupling signal” in Figure 1, respectively. For a saturated oscillator feedback with linear, reactive, 

diffusive coupling these equations become 
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where s is the level of the saturation, and 𝛽 is the (real-valued) strength of the coupling.  

The magnitude of oscillation can be scaled by the saturation s (�̃� = 𝐴 ∗ 𝑠), which yields 
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 We combine the terms 𝜆11𝑠2 into a single term 𝛼, which is the nonlinear frequency pulling[4]. 

 

Equations S.I.5 and S.I.6 can be separated into magnitude and phase,  
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To examine synchronized states we look at the oscillator phase difference 𝜑 = 𝜑2 − 𝜑1. Equations 

S.I.7-S.I.10 become 
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These are equations 1,2, and 3 from the main text where the prime character ‘ represents the 

derivative with respect to slow time T, and 
𝛿2

2
−

𝛿1

2
= Δ𝜔.  

 

II. Experimental Methods 
 

 

Experimental Methods: Device fabrication has been previously described by Villanueva et 

al[2]. All measurements were taken at a pressure of less than 100mT through a balanced bridge 

technique (not pictured in the figure)[5] in order to reduce the effect of parasitic capacitances[3]. 

All three synchronization parameters are modified by external and independent DC voltage 

sources. The coupling strength can be controlled by adjusting the feedback gain in the coupling 

loop. We amplify and tune (using the red DC control voltage box in Figure 1 of main text) a voltage 

controlled attenuator (double-line box in Figure 1 of main text) in order to modify this coupling 
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feedback gain. The frequency difference between the two oscillators can be linearly controlled by 

inducing stress in one of the beams by a DC piezovoltage, as shown by the blue box in Figure 1. 

The frequency pulling can be adjusted by varying the absolute oscillator amplitudes (keeping the 

relative amplitudes fixed to ensure that Equations 1-3 remain valid) through the use of the voltage 

controlled attenuators (single-line dark box controlled by green DC voltage). The amplifiers used 

in the setup were tested at each stage to ensure linearity of signal transfer. For more information 

see Supplementary Information section III.  All data (except for phase noise) are taken by two 

separate spectrum analyzers so that amplitude and frequency can be measured independently for 

the two oscillators. Phase noise is measured on a single spectrum analyzer with a phase noise 

module, with the input switched for either oscillator. Simulations (Figure 3) of the basins of 

attraction were carried out in Matlab, and the linear stability analysis was carried out in 

Mathematica. 

 

III. Experimental resonator properties 
 

The devices were selected such that the parameters were nearly identical. In Table S.1 we show 

the values for the resonator frequency and quality factor. We have published more details 

elsewhere[3]. Note that throughout the quality factors and frequencies varied ~6% from device 

heating due to piezoresistive bias. 

 

 

 

 

Parameter Device “1” Device “2” 

Frequency, f0 13.056 MHz 13.060 MHz  

Q factor 1640±70 1680±100 
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In Figure S.1 we 

show the driven 

response from which the values of Table S1 are found.  The devices came from the same 

fabrication run and design. 

 

 

Figure S.1:   Driven response of the two devices. Note the similarity in frequency and quality 

factor. 

 

 

IV. Calibration of setup, and measurement of synchronization 

parameters 
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Table S.1. Fit parameters of the resonance plots shown below. The 

uncertainties in Q are found from measuring Q at different times 

throughout the experiment. 
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Before calibrating the three synchronization parameters (∆𝜔, 𝛼, 𝛽), we must ensure that both 

the “oscillator” and “coupling” feedback signals (see Figure 1 of the main text) have the proper 

phase shifts, i.e., 𝑓1,2 is purely dissipative and 𝑓𝑐 is purely reactive in equations S.I.1 and S.I.2. If 

the oscillators are uncoupled, the proper phase shift in the “oscillator” feedback loops causes 

maximum oscillation.  At low saturation, the oscillator magnitude is a Lorentzian[3] function with 

respect to the frequency. In the slow time, this is 

|�̃�|
2

∝
𝑠2

1 + 4Ω2
, (S.II.1) 

with Ω =
𝑑𝜑1,2

𝑑𝑇
 from equations S.I.9 and S.I.10. We measure the oscillation amplitude and 

frequency as the phase shift in the oscillator loop is varied. We plot this for oscillator 1 in Figure 

S.2(a). A Lorentzian fit of this data yields the proper setting for the voltage controlled phase shifter 

embedded in the oscillator loop (the voltage controlled phase shifter is not pictured in Figure 1 

from the main text). From the Lorentzian fit, the central frequency gives us the proper setting for 

the phase shifter, as shown in figure S.2(b). 
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Figure S.2: a) Oscillator magnitude squared (in mV2) plotted against real frequency as the phase of oscillator feedback 

is varied. A Lorentzian fit to the data gives the maximum magnitude and central frequency of the Lorentzian. b) 

Frequency of oscillation as a function of the phase shifter voltage. The central frequency gives the correct phase 

shifter voltage.   

 

A. Calibration of coupling, 𝜷 

 

In order to verify that the coupling loop is purely reactive, we compare two different 

measurements: 1) the level of amplification of the signal from the NEMS device through the 

coupling loop, and 2) the frequency shifts of the two oscillators due to the coupling feedback. Note 

that if the coupling is not strictly reactive, then according to reference 3, we must include a 

dissipative term to the feedback, 

𝑓𝑐(𝐴1, 𝐴2) = (𝐾 + 𝑖𝛽)(𝐴2 − 𝐴1). (S.II.2) 

 

From figure 1 in the main text, if we turn off the second oscillator, then S.II.2 gives  

𝑓𝑐(𝐴1, 𝐴2) = (𝐾 + 𝑖𝛽)(−𝐴1). (S.II.3) 
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The feedback described in equation S.II.3, when inserted into equation S.I.5, will lead to not only 

tuning of the oscillator by -𝛽/2, but also additional dissipation proportional to K. Note that the 

magnitude |𝐾 + 𝑖𝛽| is the total gain of a signal through the coupling loop. By measuring this 

coupling loop gain and comparing it to measurements of the oscillator frequency shift, we can 

verify that |𝐾 + 𝑖𝛽| = |𝛽| , i.e., our coupling is strictly reactive. In Figure S.3, |𝐾 + 𝑖𝛽|  is 

measured by the first method (red line, right vertical axis), and 𝛽 is measured using the frequency 

shift of the two oscillators (blue stars and green circles, left vertical axis). If the red line had a 

larger magnitude than the data points from the frequency shifts, then there would be a dissipative 

component to the feedback ( 𝐾 ≠ 0 ). However, these two measurements agree. These 

measurements not only verify that the coupling feedback has the proper phase shift, but also 

provide a calibration for coupling 𝛽 in terms of the voltage of the coupling attenuator. 
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Figure S.3. Different measurements to calibrate coupling. The green (blue) points are found using tuning data from 

oscillator 1 (2), and correspond to the left vertical axis. The red curve is found by measuring gain around the coupling 

loop; it corresponds to the right vertical axis.  

 

B. Calibration of frequency pulling, 𝜶 

 

In order to calibrate the frequency pulling 𝛼 = 𝜆𝑠2, we first calibrate the NEMS displacement 

and oscillator magnitude |�̃�|. The thermomechanical noise of the NEMS device provides an 

absolute scale by which we can calibrate the device displacement from the electronic signal[2]. 

We can scale the NEMS displacement to the oscillator magnitude.  With the oscillator and coupling 

feedback turned off, we measure the frequency response of the NEMS device under a constant 

level of external excitation. Fitting the NEMS frequency at the peak magnitude, for different values 

of excitation, yields the nonlinear coefficient 𝜆[6]. hen the oscillators are uncoupled, the maximum 



S-10 

 

oscillator amplitude corresponds to the level of saturation s (equation S.I.3 and S.I.4). Changes to 

the feedback saturation level, and thus the nonlinear pulling, can be made by adjusting the 

oscillator loop’s attenuator after the limiting diode, as diagrammed in Figure 1 of the main text. 

C. Calibration of detuning, 𝜟𝝎 

 

We present two different ways of measuring the detuning ∆𝜔. When detuning is held fixed, a 

low value of coupling 𝛽 in equations S.I.11-S.I.13 yields a phase equation 

 

𝑑𝜑

𝑑𝑇
= Δ𝜔 + 𝛼𝑎2

2 − 𝛼𝑎1
2 = Δ𝜔. (S.II.4) 

 

According to equation S.II.4, we can find the fixed detuning by measuring the oscillator frequency 

difference at zero coupling. 

However, when the detuning is swept, a different calibration method is needed. In the experiment, 

we measure the oscillator frequency difference as a function of a piezoelectric tuning voltage 

(which changes the stress in one of the devices and hence the detuning[7]). We wish to make a 

correspondence between this tuning voltage and the detuning Δ𝜔. When the oscillators are far 

from the synchronization regime, the detuning dominates the other terms on the right hand side of 

equation S.I.13, so the oscillator frequency difference is proportional to the detuning. A linear fit 

to data far from the synchronized regime provides a relationship between the piezoelectric tuning 

voltage and the oscillator frequency difference. We therefore calibrate the detuning in terms of the 

piezoelectric tuning voltage by means of the oscillator frequency difference at data points far from 

synchronization. The calibration takes advantage of the fact 
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Figure S.4: a) Raw data of sweeps of detuning under different coupling conditions (dashed lines 𝜷 = 𝟎, solid lines 

𝜷 = −𝟎. 𝟐𝟖), with each sweep taking minutes. The synchronization region appears when coupling is turned on. The 

two sweeps, taken hours apart, show that the NEMS device frequencies are drifting. b) Difference in frequency for 

the same sweeps.  Straight lines are fit to the end sections of (b) in order to calibrate 𝚫𝝎 and correct for drifts. 

 

that the detuning is linear in the piezoelectric tuning voltage[8]; we can interpolate each linear fit 

and calibrate the detuning in the synchronization regime. In figure S.4 (a), we show the raw data 

for the frequencies of the two oscillators from two sweeps with different coupling. In Figure S.4 

(b), for the same sweeps, we show the (unscaled) oscillator frequency differences, where the linear 

fits are performed. 

The time between the measurements for the two different values of coupling ~hours, thus 

allowing drifts in oscillator frequencies to set in. However, the drift within each sweep is small, 

given that each sweep ~minutes. Therefore, through the method outlined above, each sweep can 

be calibrated to correct for these drifts. 

Note that in Figure S.4 (a), with the coupling turned on, there is mutual entrainment, evidence 

that our coupling is symmetric. Adler’s equation (equation 4 from the main text) originally 

described[9] an experiment where oscillator 1 is fed the signal of oscillator 2, but oscillator 2 is 
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not fed the signal of oscillator 1.  This asymmetric coupling led to oscillator 1, the “slave” oscillator, 

being dominated by oscillator 2, the “master” oscillator. In our experiment, it is clear that both 

oscillator frequencies shift towards one another, i.e., each oscillator has equal influence over the 

final state.   

V. Notes on the phase noise measurement 
 

The phase noise data was taken on an Agilent N9030 PXA signal analyzer using the “phase 

noise” mode. The noise data (60 points) surrounding the 1 kHz offset was fit to a straight line (in 

a log plot) and the 1 kHz point was interpolated. The error is the uncertainty in a least squares fit 

of the data. The upper horizontal line of this plot is the average noise between the two oscillators 

taken at lowest coupling. The lower horizontal line is the average taken at highest coupling. 

In the experiment, the oscillator phase noise is vastly different in the configuration shown for 

Figures 2 and 3 of the main text. When synchronization occurs in this setting, one oscillator 

dominates the noise of both when synchronized. However, if the phase delay of the oscillator 

feedback loops are adjusted, the phase noise of the two oscillators can be adjusted[3]. We adjust 

the feedback phase delay so that the phase noises are equivalent. Inevitably, a more general form 

of equations presented in Section I from the main text must be considered, and the values for alpha 

and delta omega cannot be calibrated as outlined in Section III. However, the coupling loops are 

not changed, and is very small and mutually symmetric, and so the overall behavior follows two 

simple phase oscillators. We therefore do not quantify when the synchronization will occur, but 

can predict the reduction in phase noise for the synchronized oscillators.  
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VI. Previous works on synchronization 
 

A. Definition of synchronization 

The widely accepted definition of synchronization is given in the text “Synchronization: A 

universal concept in nonlinear science” by Pikovsky, Rosenblum, and Kurths[10] on page 8 of the 

introduction: 

 

“We understand synchronization as an adjustment of rhythms of oscillating objects due 

to their weak interaction.” (emphasis theirs) 

 

They later expand on the concept of “weak interaction” on page 17: 

 

“..we can say that the introduction of coupling should not qualitatively change the behavior 

of either one of the interacting systems and should not deprive the systems of their 

individuality.” 

 

And later on the same page: 

 “To call a phenomenon synchronization, we must be sure that: 

 We analyse the behavior of two self-sustained oscillators, i.e. systems capable 

of generating their own rhythms; 

 The systems adjust their rhythm due to a weak interaction; 
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 The adjustment of rhythms occurs in a certain range of systems’ mismatch; in 

particular, if the frequency of one oscillator is slowly varied, the second follows 

this variation. 

Correspondingly, a single observation is not sufficient to conclude synchronization. 

Synchronization is a complex dynamical process, not a state.” (emphasis theirs). 

 

We examine the previous claims of synchronization with this definition. 

 

B. Previous claims of mechanical synchronization 

 

We know of two prior claims of synchronization in miniaturized mechanical systems[11, 12]. 

These claims are examined in more detail in the following sections. 

 

a. Shim, et al. Science 2007 

Shim, et al. claimed to observe the synchronization of a pair of coupled nanomechanical 

oscillators. However, that work studied a pair of coupled nanomechanical resonators driven by an 

external periodic signal and measured the response amplitude at the drive frequency or at a 

harmonic of the drive frequency. They did not give any experimental or theoretical evidence for 

self-sustained oscillations. The system which was under study had very strong coupling with the 

two linked beams always phase coherent. This study is analogous to a pair of pendulums with a 

rigid bar connecting the pendulum bobs, and driven with a harmonic force.  

 

b. Zhang, et al. PRL 2012 
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The configuration of the optomechanical system presented in Zhang, et al. is not capable of 

the weak coupling needed to establish synchronization. This is demonstrated both experimentally, 

and in the modeling. The authors also misinterpret a key piece of data. All figures mentioned in 

this section refer to the figures in Zhang, et al. 

These authors performed their experiment by coupling two optomechanical oscillators together 

by their evanescent light fields. Before coupling them together, they confirmed their devices are 

individually oscillating, as shown Figures 3 a,b. Later, in Figures 3 c,d,e, they coupled the optical 

cavities together into symmetric and anti-symmetric normal modes, and excited the system through 

one device. This serves both to excite two oscillators simultaneously, with only one optical input 

and to couple the devices together.  

The data in their Figure 3 show the system does not in fact have weak coupling. Figure 3 c,d,e 

shows the coupled system under three different values of laser power. Since an increase in the laser 

power is associated with an increase in the optical coupling between the two devices, Figure 3c is 

the data for the smallest coupling, and so if the system is strongly coupled in Figure 3c, the rest of 

the data is also strongly coupled. With respect to Figure 3c, the authors stated that the left 

optomechanical oscillator (L OMO) started self-sustained oscillation at the white dashed line. At 

a stronger laser detuning ( ~0.23 GHZ), the right optomechanical oscillator (R OMO) started self-

sustained oscillation and the L oscillator shut off. This is also found in numerical simulation in 

Figure 3f. The fact that the oscillation of R OMO shut down L OMO is clear evidence the system 

was strongly coupled: the self-oscillation of one oscillator should not turn off the other, if they are 

truly independent and weakly coupled.  

The model for the optomechanical system provided in the supplementary information of the 

study also demonstrates the strong coupling. In section S5.A the authors give equations for the 
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radiation pressure induced self-oscillation, the optical spring effect, and the reactive and 

dissipative coupling between the oscillators. The model shows the dissipative coupling between 

oscillators is comparable to the driving terms of the self-oscillation, regardless of the laser power 

or detuning. Depending on the sign of the coupling, self-oscillation in one optomechanical device 

can turn off the other oscillator. This does not constitute weak coupling, since the behavior of the 

oscillators should not qualitatively change due to the interaction. This system, when the optical 

cavities are fully coupled into symmetric and anti-symmetric modes, is not capable of weak 

coupling. A separation of the coupling and the excitation mechanism is necessary for weak 

coupling a demonstration of synchronization. 

The data in Figure 3d appears to show the two oscillations merging into a single oscillation; 

however, the authors misinterpreted the data in this figure, which does not in fact show evidence 

of two oscillations. The transition in Figure 3d is also presented in Figure 4 showing the spectra. 

The unsynchronized behavior in Figure 4d was suggested to show two independent self-sustained 

oscillations transitioning to a single synchronized state in Figure 4e. Examining the spectral width 

of the “R” oscillator (blue peak on the left in d) shows it is not consistent with self-sustained 

oscillation. As Zhang, et al pointed out earlier, when uncoupled oscillators are described, “…the 

optomechanical resonator starts self-sustaining oscillations and becomes an OMO characterized 

by sudden linewidth narrowing and oscillation amplitude growth.” (emphasis ours).  The 

spectral width of the blue peak in Figure 4d does not show this narrowing but is, however, 

consistent with the quoted width of the driven non-self-oscillatory resonance width, determined 

by the resonant frequency divided by the quality factor. In Figure 4d, the width of the blue peak 

on the left is approximately.  
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Also, the oscillations in Figure 3b are of a much different character (amplitude and width) than 

the one in Figure 3d for the “R” oscillator. It is also surprising, if the coupling was weak, that the 

two devices began self-oscillation at the same threshold in the coupled case (Figure 3d) when the 

thresholds were vastly different in the uncoupled case (Figures 3a,b): the authors do not give any 

explanation for this.  We conclude that the publication by Zhang, et al. did not show two 

oscillations transitioning to a single oscillatory state.  

 

C. Josephson Junctions 

 

There are two main features which distinguish our results from those of Josephson Junctions 

(JJs). Firstly, JJs behave as rotors driven by a constant torque, whereas our system is a more typical 

representation of standard self-sustained oscillators. Secondly, we have much more control over 

system parameters. 

Josephson Junctions can be likened to a pendulum driven by a constant torque. The frequency 

of these rotations is a function of the applied torque exerted on the pendulum, which corresponds 

to an increase in the bias current across the JJ. However, in an oscillator, the frequency is 

determined by the physical properties of the system, such as pendulum length and gravitational 

restoring force for the pendulum. Although rotors share some features of self-sustained oscillators, 

there are important differences and they will not exhibit all the phenomenon found in self-sustained 

oscillations. Also, in JJs, the onset of the periodic motion is not a supercritical Hopf bifurcation as 

in simple feedback oscillators, but a saddle-node bifurcation[13]. 

The current state of the art for Josephson systems does not exhibit the degree of control as 

demonstrated in our system. Experiments on arrays of Josephson Junctions have demonstrated 
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control over only the driving current, while we have control over all the parameters in our system. 

The JJ arrays can indeed be mapped to the Kuramoto model in some limit; however, extending 

their relevance to oscillator synchronization outside of this limit has not been shown. We have 

shown (Figure 3 of the main text) synchronization of self-sustained oscillations which do not obey 

the Kuramoto model. This phenomenon cannot be found in JJs. 

 

D. Spin-Torque Oscillators 

 

Spin-torque oscillators have been shown to synchronize (see Kaka, et al 2005[14]), but the 

system control is limited and there is no match of any theoretical models to the experimental data, 

in contrast to our study. In Kaka, et al. only one parameter was changed, namely, the current, and 

therefore the frequency. The study had a fixed value of coupling (set by fabrication constraints). 

The presented implementation also has the disadvantage that changing the current (or the magnetic 

field) inevitably changes the power and noise properties. On the other hand in our system we can 

change the frequency independently of amplitude, noise, and coupling.  
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