Quantized thermal conductance: measurements in nanostructures

K. Schwaba,*, W. Fona, E. Henriksena, J.M. Worlockb, M.L. Roukesa

aCondensed Matter Physics, California Institute of Technology, 114-36, Pasadena, CA 91125, USA
bDepartment of Physics, University of Utah, Salt Lake City, UT, USA

Abstract

We are performing experiments to probe directly the thermal conductance of suspended nanostructures with lateral dimensions ≈ 100 nm. It has been recently predicted that at low temperatures, thermal conductance in such a structure approaches a universal value of $\frac{\pi^2 k_B^2 T}{3h}$ for each massless, ballistic phonon channel, independent of material characteristics. We have developed ultra-sensitive, low dissipation DC-SQUID-based noise thermometry, and extreme isolation from the electronic environment in order to perform this measurement at temperatures below 70 mK. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Mesoscopic transport; Nanostructures; Quantized thermal conductance

It has recently been predicted [1,2] that the phonon thermal conductance through a single ballistic quantum channel should be quantized to a value of $K = \frac{\pi^2 k_B^2 T}{3h}$. This result is independent of material characteristics and even of particle type (electrons, phonons, photons, etc.) which carry the heat current [3]. Results from past experiments which intended to enter this regime for phonon thermal conductance have been obscured by parasitic electronic thermal conduction [4,5] or the inability to determine the number of thermally conducting channels [6]. The experiment that we describe here intends to overcome these difficulties and to provide the first clear measurement of phonon thermal conduction through a one-dimensional channel.

Fig. 1 shows the device we have fabricated in our laboratory to probe the thermal conductance. The device is patterned from a suspended 60 nm thick silicon nitride membrane. The center square is 4 μm on a side and is connected to the membrane through four channels with minimum size of 150 nm \times 85 nm. Deposited onto the central square are two 30 nm thick Au resistors, of which one is used as a heater and the other as a noise thermometer. A 25 nm thick Nb film is deposited onto the four channels. This superconducting film provides electronic contact to the Au resistors without the parasitic thermal conduction of a normal electron gas.

For temperatures below ≈ 150 mK, we expect to observe the thermal conductance of four acoustic channels for each leg of the sample (one longitudinal, two transverse, and one torsional mode) [7]. Recent measurements of the thermal conductance of silicon nitride show that for temperatures < 200 mK ballistic transport is realized [8,9]. To provide adiabatic coupling from the central square to the outside thermal bath, the shape of the channels follows $\cosh^2(\lambda x)$ where $\lambda = 1$ μm, as modeled in Ref. [2]. This should allow the thermal conductance to approach the maximum allowed value which is the thermal conductance quantum per channel.

Thermometry at these low temperatures with such a microscopic sample is complicated by the severe electron–phonon thermal resistance [10]. We employ DC-SQUID based noise thermometry [11] because of the extremely low back-action dissipated into the thermometer. We have tested our noise thermometry on a microscopic Au resistor (30 nm \times 300 nm \times 30 μm) and have shown that we can measure the temperature down to 70 mK (noise temperature of SQUID system is.

*Corresponding author.

E-mail address: schwab@cco.caltech.edu (K. Schwab)
< 1 mK\(^1\)). For temperatures below 70 mK, the microscopic resistor no longer follows the refrigerator temperature which could be caused by an unknown spurious power source of \(\approx 10^{-17} \) W.

The twisted pair connected to the nanostructure heater requires extensive electronic filtering. This is to attenuate the heat load from radio and microwave frequency black-body radiation generated by the Johnson noise of resistors at higher temperatures. We have installed two sets of filters, one set at 1 K and the other set at the mixing chamber. Each filter comprises of a 10-pole RC network and a separate stainless-steel powder filter. With this system we attain an effective passband of only 140 Hz from 300 K and over 200 db of attenuation from 1 MHz to > 20 GHz. This limits the total power radiated down the heater wires to < 10\(^{-18}\) W.

We have demonstrated all of the essential techniques to measure the phonon thermal conduction through one-dimensional channels and expect to confirm the recent prediction of a universal thermal conductance.

These experiments are the beginning of a very exciting new realm which may lead to the measurement of the quantum nature of thermal transport involving single phonons [12].

Acknowledgements

This work is supported by the NSF through grant DMR-9705411 and DARPA ETO/MEMS through grant DABT 63-98-1-0012.

References

\(^1\) DC-SQUIDS have been provided by M. Ketchen, IBM.