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ABSTRACT: Understanding and controlling nonlinear cou-
pling between vibrational modes is critical for the development
of advanced nanomechanical devices; it has important
implications for applications ranging from quantitative sensing
to fundamental research. However, achieving accurate
experimental characterization of nonlinearities in nano-
mechanical systems (NEMS) is problematic. Currently
employed detection and actuation schemes themselves tend
to be highly nonlinear, and this unrelated nonlinear response
has been inadvertently convolved into many previous
measurements. In this Letter we describe an experimental
protocol and a highly linear transduction scheme, specifically
designed for NEMS, that enables accurate, in situ characterization of device nonlinearities. By comparing predictions from
Euler−Bernoulli theory for the intra- and intermodal nonlinearities of a doubly clamped beam, we assess the validity of our
approach and find excellent agreement.
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Mechanical resonators are widely used for sensing
applications,1−5 and they are especially promising for

nanoscale devices,6,7 given their high quality factors, high
resonance frequencies, and ultralow masses.8 However, as the
geometric dimensions of a nanomechanical systems (NEMS)
resonator are scaled downward, its mechanical dynamic range
shrinksdue to larger thermomechanical noise amplitude and
smaller nonlinear critical amplitude.9 Since nonlinearity often
sets performance limits for resonant-sensing applications,8,10,11

the ability to experimentally characterize such properties is
essential. Further, understanding nonlinear coupling to higher
modes is important for applications requiring ultralow noise
performance3 or multimode sensing.12 Critical to accurate
characterization of nonlinearities is the use of a transduction
scheme that is both sensitive and exceptionally linear over a
wide operating range. These restrictions impose strict
limitations on the choice of actuation and detection
mechanisms.13

Quantitative studies of nonlinear mechanics at the nanoscale
necessitate accurately calibrated transduction. Previous meas-
urements of the nonlinear parameters of NEMS devices have
employed theoretical estimates of electromechanical or
optomechanical transduction efficiencies to deduce the
magnitude of mechanical motion.9,14,15 These studies typically
use idealized physical models that, in this context, are prone to
significant error. Accordingly, accurate, in situ measurements of
NEMS nonlinearities have not yet been reported.14−20

In this Letter, we describe a measurement protocol that
permits accurate quantification of the nonlinear mechanical
properties of NEMS devices. Our approach relies on engineer-
ing both a high degree of linearity between the applied input
and measured output signals and the ability to accurately
calibrate actuation and transduction responsivities. Our
calibration is achieved using transducers that are strain-coupled
and sufficiently sensitive to resolve thermomechanical fluctua-
tions. The former property ensures highly linear actuation and
detection over a large dynamic range,11 while the latter enables
accurate calibration of the displacement sensitivity through
application of the equipartition theorem. Using this funda-
mental relation eliminates the need for external calibration or
for indirect physical models of the transduction mechanisms.
We employ metallic-piezoresistive (PZM) displacement

sensing and piezoelectric (PZE) actuation to achieve in situ
characterization of the transduction efficiencies of both intra-
and intermodal nonlinearities. The high sensitivity and large
dynamic range provided by this approach enables character-
ization of the leading-order nonlinear parameters of individual
resonant modes (nonlinear stiffness and nonlinear dissipation),
the nonlinear intermodal coupling coefficients, and higher
order nonlinear parameters. While optical displacement
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transduction at the nanoscale typically offers higher motional
sensitivity than piezoresistive detection,21−23 it provides linear
transduction over only a rather limited range. Semiconducting
piezoresistive sensors can also suffer from resistive non-
linearities that complicate interpretation of measurements.24

By comparison, the metallic piezoresistive sensors used here
eliminate such issues and are easily integrated into NEMS
devices,11 circumventing the need for external instrumentation.
We assess the accuracy of our measurement protocol using a

doubly clamped beam NEMS device. Although we study only a
single idealized NEMS device, we emphasize that this approach
is applicable to a wide variety of other nanoscale mechanical
resonators, e.g. cantilevers,25 plate resonators, free−free beams,
and torsional resonators.26−28 To calibrate device response, any
extraneous drive signal is first removed by grounding the PZE
actuator input; see the bottom of Figure 1a. The total noise
signal measured then arises solely from thermomechanical
fluctuations of the mechanical resonator and subsequent noise
added from the PZM detector and amplifier circuits. These
extrinsic noise sources are easily separated and evaluated,
because (i) they represent independent stochastic processes,
and (ii) the mechanical resonance of the NEMS device presents
a distinct Lorentzian spectral response. These independent
sources are discriminated by fitting the noise to a composite
spectrum that includes an ideal Lorentzian response and an
additional white noise background. The extracted Lorentzian
response is integrated and substituted into the equipartition
theorem to give the required displacement responsivity (with
units m/V):
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Here meff and ⟨V2⟩ are the effective mass and root-mean-
squared (RMS) voltage at the required measurement position,
ω is the angular resonant frequency, kB is Boltzmann’s constant,
and T is the absolute temperature. The resonant frequency ω is
obtained from the fit to a Lorentzian response (see above).
Therefore, only the effective mass meff at the measurement
position need be determined to complete the calibration step. It
can be determined through careful measurements of device
dimensions in conjunction with a expression for meff, which can
be derived analytically for simple geometries. For complex
devices, finite element analysis is required to accurately
determine meff. For the particular device in this study,
deviations between theory and FEM analysis become significant
only for a large mode number.
This calibration step enables quantification of the NEMS

device displacement under active excitation that is maintained
within the metallic-piezoresistive dynamic range (PZM DR);
see Figure 1b. Importantly, placement of the metallic
piezoresistive sensors must be optimized so that the PZM
DR covers the regime in which mechanical nonlinearities in the
NEMS device are observed, as also illustrated in Figure 1b. To
facilitate quantitative measurement of mechanical nonlinearities
in the NEMS device, linearity in the actuation scheme is also
required. The in situ piezoelectric actuation employed in our
studies provides linearity over both a large displacement range
and frequency bandwidth.29

The methodology described above enables our measurement
of the leading-order nonlinear stiffness coefficients for the first
three out-of-plane flexural modes of a doubly clamped beam
NEMS resonator. These measurements are compared to the
predictions of Euler−Bernoulli beam theory for the nonlinear
coefficients λpq obeying the equation,

Figure 1. (a) Schematic of measurement design and protocol. When the switch is set to “Thermal”, the device is passively excited by thermal
fluctuations. The resulting mechanical motion is transduced into electronic signals via the piezoresistive detector, which can be amplified through use
of an external electronic amplifier. Other sources of noise from the detection and amplification exist. Setting the switch to “Harmonic” actively
excites the device enabling interrogation of nonlinear response. (b) Illustration of relevant system dynamic ranges. The thermomechanical noise
(bottom of red arrow) is extracted from the total noise spectrum (bottom of yellow arrow) and used to calibrate the right-hand vertical axis within
the dynamic range (DR) of the metallic piezoresistor (PZM). The upper limit of the DR of the NEMS device is defined by the nonlinear critical
amplitude and clearly resides within PZM DR. This enables measurement of the nonlinear properties of the device.
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where ΔΩp is the fractional frequency shift of mode p, and
Amax,q is the maximum RMS displacement of the frequency
response of mode q. Note that the Einstein summation
convention is not used throughout. Calculations of the
nonlinear coefficients λpq using Euler−Bernoulli theory gives
(see Supporting Information)
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Here δpq is the Kronecker delta function, L is the device length,
t is the thickness, w is the width, T is the average built-in stress
of the materials, E is the Young’s modulus of both materials,
and I is the areal moment of inertia. Additionally, Xpq =
∫ 0
1Φp′Φq′dξ with Φp(ξ) is the mode amplitude, normalized

according to the constraint ∫ 0
1ΦpΦqdξ ≡ δpq; the length scale

for normalized coordinate along the beam axis, ξ, is L.
A scanning electron microscope (SEM) image of the

piezoelectric doubly clamped beam device is shown in Figure
2a. The scale bar is 1 μm, and the device dimensions L × t × w
are 10 μm × 0.21 μm × 0.47 μm. It is patterned from an
aluminum nitride (AlN)/molybdenum (Mo)/Silicon-On-Insu-
lator (SOI) multilayer; fabrication details and the multilayer

structure are described elsewhere.30,31 For the noise data we set
the input of the NEMS to ground, “Thermal” as shown in
Figure 1a. The noise output from the NEMS is taken with an
Agilent 4395 spectrum analyzer, with bandwidth set between
10 Hz and 1 kHz, depending on the mode number of the
device. The driven response, when the input is set to
“Harmonic” as in Figure 1a, is taken with a single lock-in
measurement with a Agilent 3577A network analyzer, using
output voltages between 0.01 V and 1 V peak. Data presented
in Figure 1b are obtained from this device, and they show that
the range of displacements above and below the critical
amplitude (i.e., at the Duffing bifurcation point) is nested
within the PZM DR. Therefore, by measuring the driven
response of each mode of this device, we can directly measure
the intramodal nonlinear coefficients using ΔΩp = λppAmax,p

2 .
The frequency response curves related to these measurements
for mode 2 (i.e., p = 2) are given in the top graph of Figure 2b.
Note that the horizontal axis in this graph is simply a
renormalization of the applied drive frequency centered on the
linear-regime resonant frequency of mode 2. The data used for
characterization of the intermodal coefficients from Table 1, are

used with the circuit presented in Figure 2a. Here we sweep the
frequency of one mode with an Agilent 33250 signal generator
and detect the frequency shift of another mode with a digital
phase locked loop (PLL). The PLL circuit uses an Agilent
3577A network analyzer to probe the phase response of the
device.
The intermodal coefficients characterize how nonlinear

coupling induces, from the RMS displacement of one mode,
a fractional frequency shift of another mode, i.e., p ≠ q in eq 2.
The fractional frequency shift of mode p in eq 2 is measured
under low excitation, to ensure a linear response in this mode,
and that the nonlinearity excited in the beam is solely due to
mode q. This enables measurement of the intermodal nonlinear
coefficient, λpq, without distortion from the intramodal
nonlinearity arising from λpp. In contrast, mode q is excited at
larger amplitude to induce a nonlinear response in the beam.
While direct measurement of the intermodal coefficient is
possible, analogous measurement of the intramodal coefficients
presents a more formidable challenge because two modes
would need to be monitored simultaneously.
Note that the fractional frequency shift of mode p is

proportional to the amplitude squared of mode q, as in eq 2.
Consequently, the intermodal coefficient can be obtained by
comparing the upper graph of Figure 2b to measurements of
the fractional frequency shift of mode p vs the drive frequency
of mode q. This is, of course, true only if the frequency

Figure 2. (a) Circuit diagram for measurement of intermodal
nonlinearities in doubly clamped PZE-actuated/PZM-sensed beam;
intramodal nonlinearities are measured without using this circuit; see
Figure 1a. A signal generator is used to excite the device at a range of
frequencies around the resonance of mode q, while the frequency of
mode p is measured using a network analyzer with a digital PLL. (b)
Example measurement of intra- and intermodal nonlinearities. Data in
the upper graph is due to the intramodal nonlinearity of the second
mode. Data in the bottom graph shows the effect of intermodal
nonlinearity on the frequency shift of the third mode due to excitation
of the second mode. Comparing these two data sets enables the
intermodal nonlinearity coefficient to be extracted.

Table 1. Measured (Theoretically Calculated) Nonlinear
Stiffness Coefficients λpq (10

−5 nm−2) for the First Three
Out-of-Plane Flexural Modes of the Doubly-Clamped NEMS
Devicea

q = 1 q = 2 q = 3

p = 1 0.53 ± 0.01 1.76 ± 0.36 3.51 ± 0.47
(0.53) (1.45) (3.59)

p = 2 0.18 ± 0.01 1.16 ± 0.03 1.77 ± 0.13
(0.186) (1.16) (1.65)

p = 3 0.13 ± 0.01 0.35 ± 0.06 1.43 ± 0.07
(0.124) (0.445) (1.43)

aUncertainties originate from the linear fits to the measured response,
e.g., see Figure 2b. Monitored modes (p); driven modes (q).
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separation between the modal resonance peaks is much larger
than their spectral widthsensuring that no other modes are
significantly excited. The lower graph of Figure 2b gives this
measurement for excitation of mode 2 at a range of frequencies,
and detection of the fractional frequency shift of mode 3, i.e., p
= 3, q = 2 in eq 2. Comparing the two graphs in Figure 2b
clearly demonstrates their identical shape. Importantly, these
two graphs need not be measured simultaneously. The required
nonlinear coefficient λpq can be obtained by fitting a straight
line to the maxima of the lower graph of Figure 2b. The slope
of this line is clearly βpq = ΔΩp/ΔΩq. Substituting this
expression into eq 2 then gives the required result: λpq = βpqλqq.
Measurements using the procedure described above and

calculations from Euler−Bernoulli theory, eq 3, for the
intermodal and intramodal coefficients are given in Table 1.
Intramodal coefficients fall on the main diagonal only. Note the
excellent agreement between theory and measurement for these
coefficients, with all predictions residing within measurement
uncertainty. While good agreement is also found for the
intermodal coefficients (the off-diagonal entries), measurement
uncertainty in this case is larger. The reason for this is evident
from the lower graph of Figure 2b, where the uncertainty in
defining the straight line is greater, due to the lower signal-to-
noise ratio of the measurements.
We have demonstrated design principles and a measurement

protocol for obtaining accurate in situ characterization of the
nonlinear properties of NEMS resonators. Our approach
utilizes PZM displacement transduction and piezoelectric
actuation to accurately and independently calibrate the driven
motion of the device. These inherently linear schemes facilitate
measurement interpretation and obviate the need for external
transduction. We believe our study is the first confirmation of
the quantitative predictions of Euler−Bernoulli theory for
tension-induced geometric nonlinearities; direct and accurate
measurements of the nonlinear intra- and intermodal stiffness
coefficients for the first three out-of-plane flexural modes of
doubly clamped NEMS beams are obtained. Our comparison
validates the use of Euler−Bernoulli theory for quantitative
characterization of the nonlinear mechanical properties of
nanoscale mechanical devices and will be useful in evaluation of
nonlinear properties and mode-coupling for advanced NEMS
applications.
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